Learn More
Post-movement beta (around 20 Hz) synchronization was investigated in 2 experiments with self-paced finger extension and flexion and externally paced wrist movement. The electrodes were fixed over the sensorimotor area in distances of 2.5 cm. It was found that after a brisk finger movement the desynchronized beta rhythm displayed a fast recovery and a(More)
EEG desynchronization is a reliable correlate of excited neural structures of activated cortical areas. EEG synchronization within the alpha band may be an electrophysiological correlate of deactivated cortical areas. Such areas are not processing sensory information or motor output and can be considered to be in an idling state. One example of such an(More)
Event-related desynchronization (ERD) and recovery of EEG beta rhythms (15-26 Hz) were studied during slow and brisk self-paced index finger extension and flexion. beta rhythms started to recover earlier in brisk movements. Brisk movements showed no correlation between duration of EMG burst in the extensor muscle and the latency of recovery whereas slow(More)
Changes in central beta-rhythms (14-29 Hz) during movement were investigated in 12 right-handed subjects by quantifying event-related desynchronisation (ERD). EEG was recorded from 24 closely spaced electrodes overlaying the left and right sensorimotor hand area. The subjects performed approximately 80 brisk (movement time < 0.21 s) and 80 slow (movement(More)
Interaction of simultaneous tactile input at two finger sites in primary (SI) and secondary somatosensory cortex (SII) was studied by whole-head magnetoencephalography. Short pressure pulses were delivered to fingers of the right and left hand at an interstimulus interval of 1.6 s. The first phalanx of the left digit 1 and four other sites were stimulated(More)
BACKGROUND Previous studies have shown increases in experimental pain during induction of a negative emotion with visual stimuli, verbal statements or unpleasant odours. The goal of the present study was to analyse the spatio-temporal activation patterns underlying pain augmentation during negative emotional sounds. METHODS Negative (e.g., crying),(More)
We analysed whether type of movement (brisk vs slow) and active muscle force are encoded in the time course of mu-rhythm desynchronization during self-paced finger movements. Ten subjects performed 100 brisk and slow extensions of the right index finger. The time course of mu-rhythm desynchronization in the contralateral sensorimotor area before movement(More)
Effects of the size of corpus callosum measured from in vivo magnetic resonance imaging (MRI) recordings on cortical activations evaluated using functional MRI (fMRI) were analyzed during motor tasks. Twelve right-handed men performed unilateral finger movements and bilateral movements either with or without a temporal delay between left and right fingers.(More)
OBJECTIVES Event-related desynchronization (ERD) of alpha- and beta-rhythms, the post-movement beta-synchronization and the cortical movement-related potentials were analyzed in distal (finger) and proximal (shoulder) movements. METHODS EEG was recorded in 7 healthy right-handed men using a 59-channel whole-head EEG system while subjects performed(More)
Noxious stimulation activates-in addition to the brain structures related to sensory, emotional, and cognitive components of pain-also the brain's motor system. Effect of noxious input on the primary motor (MI) cortex remains, however, poorly understood. To characterize this effect in more detail, we quantified the ongoing oscillatory communication between(More)