Andrej Stancak

Learn More
Post-movement beta (around 20 Hz) synchronization was investigated in 2 experiments with self-paced finger extension and flexion and externally paced wrist movement. The electrodes were fixed over the sensorimotor area in distances of 2.5 cm. It was found that after a brisk finger movement the desynchronized beta rhythm displayed a fast recovery and a(More)
EEG desynchronization is a reliable correlate of excited neural structures of activated cortical areas. EEG synchronization within the alpha band may be an electrophysiological correlate of deactivated cortical areas. Such areas are not processing sensory information or motor output and can be considered to be in an idling state. One example of such an(More)
Interaction of simultaneous tactile input at two finger sites in primary (SI) and secondary somatosensory cortex (SII) was studied by whole-head magnetoencephalography. Short pressure pulses were delivered to fingers of the right and left hand at an interstimulus interval of 1.6 s. The first phalanx of the left digit 1 and four other sites were stimulated(More)
Changes in central beta-rhythms (14-29 Hz) during movement were investigated in 12 right-handed subjects by quantifying event-related desynchronisation (ERD). EEG was recorded from 24 closely spaced electrodes overlaying the left and right sensorimotor hand area. The subjects performed approximately 80 brisk (movement time < 0.21 s) and 80 slow (movement(More)
Event-related desynchronization (ERD) and recovery of EEG beta rhythms (15-26 Hz) were studied during slow and brisk self-paced index finger extension and flexion. beta rhythms started to recover earlier in brisk movements. Brisk movements showed no correlation between duration of EMG burst in the extensor muscle and the latency of recovery whereas slow(More)
The effects of external load opposing brisk voluntary extension of the right index finger on the EEG rhythms in the left and right sensorimotor hand area were studied in 13 right-handed subjects. Four levels of external loads corresponding to the weights of 0 g (no load), 30 g, 80 g and 130 g were used. The effects of external load on EEG rhythms were the(More)
To analyze the distribution of the cortical electrical activity related to self-paced voluntary movements, i.e. the movement-related readiness potentials (Bereitschaftspotential, BP) and the event-related desynchronization (ERD) and synchronization (ERS) of cortical rhythms using intracerebral recordings. EEG was recorded in 14 epilepsy surgery candidates(More)
EEGs were recorded from sensorimotor areas of 12 subjects performing unilateral self-paced brisk and slow finger movements. Two different beta components were found below 30 Hz: (i) One component, at about twice the frequency of the mu rhythm, showed desynchronization in parallel with the mu rhythm starting at about 2 s prior to movement. Measurements of(More)
Spontaneous approximately 20-Hz oscillations, arising predominantly from the primary motor cortex (MI), are readily observed by magnetoencephalography (MEG). Prior studies have indicated that the level of the approximately 20-Hz rhythm reflects the functional state of the MI cortex: increased 20-Hz level is associated with increased inhibition and(More)
If corpus callosum (CC) mediates the activation of the secondary somatosensory area (SII) ipsilateral to the side of stimulation, then the peak latencies of the contra- and ipsilateral SII activity as well as the amplitude of the ipsilateral SII activity should correlate with the size of CC. Innocuous electrical stimuli of five different intensities were(More)