Learn More
When the brain is deprived of input from one sensory modality, it often compensates with supranormal performance in one or more of the intact sensory systems. In the absence of acoustic input, it has been proposed that cross-modal reorganization of deaf auditory cortex may provide the neural substrate mediating compensatory visual function. We tested this(More)
The study investigates early postnatal development of local field potentials (LFPs) in the primary auditory cortex of hearing and congenitally deaf cats. In hearing cats, LFPs elicited by electrical intracochlear stimulation demonstrated developmental changes in mid-latency range, including reductions in peak and onset latencies of individual waves and a(More)
Sensory and environmental manipulations affect the development of sensory systems. Higher-order auditory representations (auditory categories or "objects") evolve with experience and via top-down influences modify representations in early auditory areas. During development of a functional auditory system, the capacity for bottom-up reorganizations is(More)
In congenitally deaf cats, the central auditory system is deprived of acoustic input because of degeneration of the organ of Corti before the onset of hearing. Primary auditory afferents survive and can be stimulated electrically. By means of an intracochlear implant and an accompanying sound processor, congenitally deaf kittens were exposed to sounds and(More)
Cortical development is dependent on stimulus-driven learning. The absence of sensory input from birth, as occurs in congenital deafness, affects normal growth and connectivity needed to form a functional sensory system, resulting in deficits in oral language learning. Cochlear implants bypass cochlear damage by directly stimulating the auditory nerve and(More)
The congenitally deaf cat suffers from a degeneration of the inner ear. The organ of Corti bears no hair cells, yet the auditory afferents are preserved. Since these animals have no auditory experience, they were used as a model for congenital deafness. Kittens were equipped with a cochlear implant at different ages and electro-stimulated over a period of(More)
We examined the longitudinal development of the cortical auditory evoked potential (CAEP) in 21 children who were fitted with unilateral cochlear implants and in two children who were fitted with bilateral cochlear implants either before age 3.5 years or after age 7 years. The age cut-offs (<3.5 years for early-implanted and >7 years for late-implanted)(More)
The present study investigates the functional deficits of naive auditory cortices in adult congenitally deaf cats. For this purpose, their auditory system was stimulated electrically using cochlear implants. Synaptic currents in cortical layers were revealed using current source density analyses. They were compared with synaptic currents found in(More)
This paper investigates the spatial resolution of electrical intracochlear stimulation in order to enable further refinement of cochlear implants. For this purpose electrical potential distributions around a conventional human intracochlear electrode (NUCLEUS-22) were measured in a tank, in cat cadaver cochleae and in living cat cochleae. Potential(More)
Congenital auditory deprivation leads to deficits in the auditory cortex. The present review focuses on central aspects of auditory deprivation: development, plasticity, corticocortical interactions, and cross-modal reorganization. We compile imaging data from human subjects, electroencephalographic data from cochlear implanted children, and animal research(More)