Learn More
—Acquisition of new sensorimotor knowledge by imitation is a promising paradigm for robot learning. To be effective, action learning should not be limited to direct replication of movements obtained during training but must also enable the generation of actions in situations a robot has never encountered before. This paper describes a methodology that(More)
The paper presents a two-layered system for (1) learning and encoding a periodic signal without any knowledge on its frequency and waveform, and (2) modulating the learned periodic trajectory in response to external events. The system is used to learn periodic tasks on a humanoid HOAP-2 robot. The first layer of the system is a dynami-cal system responsible(More)
A number of studies discuss the design and control of various exoskeleton mechanisms, yet relatively few address the effect on the energy expenditure of the user. In this paper, we discuss the effect of a performance augmenting exoskeleton on the metabolic cost of an able-bodied user/pilot during periodic squatting. We investigated whether an exoskeleton(More)
—To control the motion of a humanoid robot along a desired trajectory in contact with a rigid object, we need to take into account forces that arise from contact with the surface of the object. In this paper we propose a new method that enables the robot to adapt its motion to different surfaces. The initial trajectories are encoded by dynamic movement(More)
—The framework of dynamic movement primitives contains many favorable properties for the execution of robotic trajectories, such as indirect dependency on time, response to perturbations, and the ability to easily modulate the given trajectories, but the framework in its original form remains constrained to the kinematic aspect of the movement. In this(More)
— The framework of dynamic movement primitives allows the generation of discrete and periodic trajectories, which can be modulated in various aspects. We propose and evaluate a novel modulation approach that includes force feedback and thus allows physical interaction with objects and the environment. The proposed approach also enables the coupling of(More)