Andrej Denisenko

Learn More
The negatively charged nitrogen-vacancy (NV) center in diamond has been shown recently as an excellent sensor for external spins. Nevertheless, their optimum engineering in the near-surface region still requires quantitative knowledge in regard to their activation by vacancy capture during thermal annealing. To this aim, we report on the depth profiles of(More)
Spins in solids are cornerstone elements of quantum spintronics. Leading contenders such as defects in diamond or individual phosphorus dopants in silicon have shown spectacular progress, but either lack established nanotechnology or an efficient spin/photon interface. Silicon carbide (SiC) combines the strength of both systems: it has a large bandgap with(More)
Atomic-size spin defects in solids are unique quantum systems. Most applications require nanometre positioning accuracy, which is typically achieved by low-energy ion implantation. A drawback of this technique is the significant residual lattice damage, which degrades the performance of spins in quantum applications. Here we show that the charge state of(More)
Photonic structures in diamond are key to most of its application in quantum technology. Here, we demonstrate tapered nanowaveguides structured directly onto the diamond substrate hosting shallow-implanted nitrogen vacancy (NV) centers. By optimization based on simulations and precise experimental control of the geometry of these pillar-shaped(More)
Newly discovered van der Waals materials like MoS2, WSe2, hexagonal boron nitride (h-BN), and recently C2N have sparked intensive research to unveil the quantum behavior associated with their 2D structure. Of great interest are 2D materials that host single quantum emitters. h-BN, with a band gap of 5.95 eV, has been shown to host single quantum emitters(More)
Platinum nanoparticles supported on boron-doped single-crystalline diamond surfaces were used as a model system to investigate the catalytic activity with respect to the influence of particle morphology, particle density and surface preparation of the diamond substrates. We report on the preparation, characterization and activity regarding hydrogen(More)
In recent years, solid-state spin systems have emerged as promising candidates for quantum information processing. Prominent examples are the nitrogen-vacancy (NV) center in diamond, phosphorus dopants in silicon (Si:P), rare-earth ions in solids, and VSi-centers in silicon-carbide. The Si:P system has demonstrated that its nuclear spins can yield(More)
Nuclear magnetic resonance (NMR) spectroscopy is a key analytical technique in chemistry, biology, and medicine. However, conventional NMR spectroscopy requires an at least nanoliter-sized sample volume to achieve sufficient signal. We combined the use of a quantum memory and high magnetic fields with a dedicated quantum sensor based on nitrogen vacancy(More)
A detailed quantum-mechanical analysis of the model of water oxidizing complex, based on recent X-ray data on the structure of PSII, was made. A mechanism of water oxidation was suggested and explained for the first time. The role of three manganese atoms that are not involved directly in water oxidation, the role of the cubic structure of the complex, and(More)
Gold nanoparticles were prepared by electrochemical deposition on highly oriented pyrolytic graphite (HOPG) and boron-doped, epitaxial 100-oriented diamond layers. Using a potentiostatic double pulse technique, the average particle size was varied in the range from 5 nm to 30 nm in the case of HOPG as a support and between < 1 nm and 15 nm on diamond(More)