Learn More
Here, we investigate the role of sensory feedback in gait generation and transition by using a three-dimensional, neuro-musculo-mechanical model of a salamander with realistic physical parameters. Activation of limb and axial muscles were driven by neural output patterns obtained from a central pattern generator (CPG) which is composed of simulated spiking(More)
Animals have to coordinate a large number of muscles in different ways to efficiently move at various speeds and in different and complex environments. This coordination is in large part based on central pattern generators (CPGs). These neural networks are capable of producing complex rhythmic patterns when activated and modulated by relatively simple(More)
The evolutionary transition from water to land required new locomotor modes and corresponding adjustments of the spinal “central pattern generators” for locomotion. Salamanders resemble the first terrestrial tetrapods and represent a key animal for the study of these changes. Based on recent physiological data from salamanders, and previous work on the(More)
Vertebrate animals exhibit impressive locomotor skills. These locomotor skills are due to the complex interactions between the environment, the musculo-skeletal system and the central nervous system, in particular the spinal locomotor circuits. We are interested in decoding these interactions in the salamander, a key animal from an evolutionary point of(More)
In vertebrates, " central pattern generators " (CPGs) for locomotion are neural networks residing in the spinal cord and brain stem, that transform simple control signals into precisely timed command sequences, e.g. for locomotion, chewing, breathing or digestion. Some studies suggest that the design of the locomotor CPG is evolutionary conservative. Among(More)
  • 1