Andrei N. Khlobystov

Learn More
The electron optical performance of a transmission electron microscope (TEM) is characterized for direct spatial imaging and spectroscopy using electrons with energies as low as 20 keV. The highly stable instrument is equipped with an electrostatic monochromator and a C(S)-corrector. At 20 kV it shows high image contrast even for single-layer graphene with(More)
The ability to tune the properties of graphene nanoribbons (GNRs) through modification of the nanoribbon's width and edge structure widens the potential applications of graphene in electronic devices. Although assembly of GNRs has been recently possible, current methods suffer from limited control of their atomic structure, or require the careful(More)
Although fullerenes can be efficiently generated from graphite in high yield, the route to the formation of these symmetrical and aesthetically pleasing carbon cages from a flat graphene sheet remains a mystery. The most widely accepted mechanisms postulate that the graphene structure dissociates to very small clusters of carbon atoms such as C(2), which(More)
Although the outer surface of single-walled carbon nanotubes (atomically thin cylinders of carbon) can be involved in a wide range of chemical reactions, it is generally thought that the interior surface of nanotubes is unreactive. In this study, we show that in the presence of catalytically active atoms of rhenium inserted into nanotubes, the nanotube(More)
Single-walled carbon nanotubes (SWNTs), which are graph-itic tubular structures with single-atom-thick sidewalls and varying diameters, are effective containers for a wide variety of molecular species. [1–4] They are particularly suitable for study by transmission electron microscopy (TEM). [4] Chemical reactions between molecules inside nanotubes can be(More)
Carbon nanotubes (CNTs) act as efficient nanoreactors, templating the assembly of sulfur-terminated graphene nanoribbons (S-GNRs) with different sizes, structures, and conformations. Spontaneous formation of nanoribbons from small sulfur-containing molecules is efficiently triggered by heat treatment or by an 80 keV electron beam. S-GNRs form readily in(More)
Clusters of transition metals, W, Re, and Os, upon encapsulation within a single-walled carbon nanotube (SWNT) exhibit marked differences in their affinity and reactivity with the SWNT, as revealed by low-voltage aberration-corrected high-resolution transmission electron microscopy (AC-HRTEM). Activated by an 80 keV electron beam, W reacts only weakly with(More)
Graphene grown by high temperature molecular beam epitaxy on hexagonal boron nitride (hBN) forms continuous domains with dimensions of order 20 μm, and exhibits moiré patterns with large periodicities, up to ~30 nm, indicating that the layers are highly strained. Topological defects in the moiré patterns are observed and attributed to the relaxation of(More)
Atomically thin carbon nanotubes serve as transparent-test tubes for individual molecules of functionalised endohedral fullerenes. Aberration-corrected transmission electron microscopy reveals the complex dynamic behaviour of these molecules at the atomic level, and it sheds light on the mechanism of their encapsulation into nanotubes.
We propose to use the damping signal of an oscillating cantilever in dynamic atomic force microscopy as a noninvasive tool to study the vibrational structure of the substrate. We present atomically resolved maps of damping in carbon nanotube peapods, capable of identifying the location and packing of enclosed Dy@C_{82} molecules as well as local excitations(More)