Andrei N Khlobystov

Learn More
The definition of ‘life’ has invoked innumerable vigorous discussions, ranging from the religious to the scientific, philosophical and metaphysical, and still today no universally acceptable definition is available. This controversy is inescapable because of the absence of a theory of the nature of living systems1. There is, however, an urgent practical(More)
The electron optical performance of a transmission electron microscope (TEM) is characterized for direct spatial imaging and spectroscopy using electrons with energies as low as 20 keV. The highly stable instrument is equipped with an electrostatic monochromator and a C(S)-corrector. At 20 kV it shows high image contrast even for single-layer graphene with(More)
Flexible and ultratransparent conductors based on graphene sheets have been considered as one promising candidate for replacing currently used indium tin oxide films that are unlikely to satisfy future needs due to their increasing cost and losses in conductivity on bending. Here we demonstrate a simple and fast electrochemical method to exfoliate graphite(More)
We have developed a method that enables the efficient insertion of transition-metal atoms and their small clusters into carbon nanotubes. As a model system, Os complexes attached to the exterior of fullerene C60 (exohedral metallofullerenes) were shown to be dragged into the nanotube spontaneously and irreversibly due to strong van der Waals interactions,(More)
Encapsulation of organic molecules in carbon nanotubes has opened a new route for the fabrication of hybrid nanostructures. Here we show that diameter-selective encapsulation of two metallocene compounds bis(cyclopentadienyl) cobalt and bis(ethylcyclopentadienyl) cobalt has been observed in single-walled carbon nanotubes. In particular,(More)
Although fullerenes can be efficiently generated from graphite in high yield, the route to the formation of these symmetrical and aesthetically pleasing carbon cages from a flat graphene sheet remains a mystery. The most widely accepted mechanisms postulate that the graphene structure dissociates to very small clusters of carbon atoms such as C(2), which(More)
The hollow core inside a carbon nanotube can be used to confine single molecules and it is now possible to image the movement of such molecules inside nanotubes. To date, however, it has not been possible to control this motion, nor to detect the forces moving the molecules, despite experimental and theoretical evidence suggesting that almost friction-free(More)
The specific capacity of commercially available cathode carbon-coated lithium iron phosphate is typically 120-160 mAh g(-1), which is lower than the theoretical value 170 mAh g(-1). Here we report that the carbon-coated lithium iron phosphate, surface-modified with 2 wt% of the electrochemically exfoliated graphene layers, is able to reach 208 mAh g(-1) in(More)
In this critical review we survey non-covalent interactions of carbon nanotubes with molecular species from a chemical perspective, particularly emphasising the relationship between the structure and dynamics of these structures and their functional properties. We demonstrate the synergistic character of the nanotube-molecule interactions, as molecules that(More)
We have demonstrated that ubiquitous van der Waals forces are significant in controlling the interactions between nanoparticles and nanotubes. The adsorption of gold nanoparticles (AuNPs) on nanotubes (MWNTs) obeys a simple quadratic dependence on the nanotube surface area, regardless of the source of AuNPs and MWNTs. Changes in the geometric parameters of(More)