Learn More
Flexible and ultratransparent conductors based on graphene sheets have been considered as one promising candidate for replacing currently used indium tin oxide films that are unlikely to satisfy future needs due to their increasing cost and losses in conductivity on bending. Here we demonstrate a simple and fast electrochemical method to exfoliate graphite(More)
The definition of ‘life’ has invoked innumerable vigorous discussions, ranging from the religious to the scientific, philosophical and metaphysical, and still today no universally acceptable definition is available. This controversy is inescapable because of the absence of a theory of the nature of living systems1. There is, however, an urgent practical(More)
Encapsulation of organic molecules in carbon nanotubes has opened a new route for the fabrication of hybrid nanostructures. Here we show that diameter-selective encapsulation of two metallocene compounds bis(cyclopentadienyl) cobalt and bis(ethylcyclopentadienyl) cobalt has been observed in single-walled carbon nanotubes. In particular,(More)
The electron optical performance of a transmission electron microscope (TEM) is characterized for direct spatial imaging and spectroscopy using electrons with energies as low as 20 keV. The highly stable instrument is equipped with an electrostatic monochromator and a C(S)-corrector. At 20 kV it shows high image contrast even for single-layer graphene with(More)
Although fullerenes can be efficiently generated from graphite in high yield, the route to the formation of these symmetrical and aesthetically pleasing carbon cages from a flat graphene sheet remains a mystery. The most widely accepted mechanisms postulate that the graphene structure dissociates to very small clusters of carbon atoms such as C(2), which(More)
In this critical review we survey non-covalent interactions of carbon nanotubes with molecular species from a chemical perspective, particularly emphasising the relationship between the structure and dynamics of these structures and their functional properties. We demonstrate the synergistic character of the nanotube-molecule interactions, as molecules that(More)
Single-walled carbon nanotubes (SWNTs), which are graph-itic tubular structures with single-atom-thick sidewalls and varying diameters, are effective containers for a wide variety of molecular species. [1–4] They are particularly suitable for study by transmission electron microscopy (TEM). [4] Chemical reactions between molecules inside nanotubes can be(More)
We have demonstrated that ubiquitous van der Waals forces are significant in controlling the interactions between nanoparticles and nanotubes. The adsorption of gold nanoparticles (AuNPs) on nanotubes (MWNTs) obeys a simple quadratic dependence on the nanotube surface area, regardless of the source of AuNPs and MWNTs. Changes in the geometric parameters of(More)
The specific capacity of commercially available cathode carbon-coated lithium iron phosphate is typically 120-160 mAh g(-1), which is lower than the theoretical value 170 mAh g(-1). Here we report that the carbon-coated lithium iron phosphate, surface-modified with 2 wt% of the electrochemically exfoliated graphene layers, is able to reach 208 mAh g(-1) in(More)
Clusters of transition metals, W, Re, and Os, upon encapsulation within a single-walled carbon nanotube (SWNT) exhibit marked differences in their affinity and reactivity with the SWNT, as revealed by low-voltage aberration-corrected high-resolution transmission electron microscopy (AC-HRTEM). Activated by an 80 keV electron beam, W reacts only weakly with(More)