Learn More
Estrogen is central to many physiological processes throughout the human body. We have previously shown that the G protein-coupled receptor GPR30 (also known as GPER), in addition to classical nuclear estrogen receptors (ER and ER), activates cellular signaling pathways in response to estrogen. In order to distinguish between the actions of classical(More)
Hantaviruses use α(v)β(3) integrins on the surface of human host cells as a gateway to invasion, hence compounds that target this receptor may be used as antiviral agents. To accomplish this aim, new peptidomimetic compounds were selected based on similarity to a cyclic peptide known to bind the α(v)β(3) receptor. This first round of biological screening(More)
Aromatase inhibitors (AI) are being evaluated as long-term adjuvant therapies and chemopreventives in breast cancer. However, there are concerns about bone mineral density loss in an estrogen-free environment. Unlike nonsteroidal AIs, the steroidal AI exemestane may exert beneficial effects on bone through its primary metabolite 17-hydroexemestane. We(More)
Previous studies have shown that the DNA repair component Metnase (SETMAR) mediates resistance to DNA damaging cancer chemotherapy. Metnase has a nuclease domain that shares homology with the Transposase family. We therefore virtually screened the tertiary Metnase structure against the 550,000 compound ChemDiv library to identify small molecules that might(More)
Ligand efficiency metrics are used in drug discovery to normalize biological activity or affinity with respect to physicochemical properties such as lipophilicity and molecular size. This Perspective provides an overview of ligand efficiency metrics and summarizes thermodynamics of protein-ligand binding. Different classes of ligand efficiency metric are(More)
Three models have been proposed for the nature of the SOS-inducing signal in E. coli. One model postulates that degradation products of damaged DNA generate an SOS-inducing signal; another model surmises that the very lesions produced by UV damage constitute the SOS-inducing signal in vivo; a third model proposes that DNA damage is processed upon DNA(More)
In beta-lactam producing microorganisms, the first step in the biosynthesis of the beta-lactam ring is the condensation of three amino acid precursors: alpha-aminoadipate, L-cysteine and D-valine. In Nocardia lactamdurans and other cephamycin-producing actinomycetes, alpha-aminoadipate is generated from L-lysine by two sequential enzymatic steps. The first(More)
Cephamycin C-producing microorganisms contain a two-protein enzyme system that converts cephalosporins to 7-methoxycephalosporins. Interaction between the two component proteins P7 (Mr 27,000) and P8 (Mr 32,000) has been studied by immunoaffinity chromatography using anti-P7 and anti-P8 antibodies, cross-linking with glutaraldehyde, and fluorescence(More)
The bla gene of the cephamycin cluster of Nocardia lactamdurans has been subeloned in the shuttle plasmids pULVK2 and pULVK2A and amplified in N. lactamdurans LC411. The transformants showed two- to threefold higher beta-lactamase activity. Formation of beta-lactamase preceded the onset of cephamycin biosynthesis. The beta-lactamase of N. lactamdurans(More)
The ability of Mycobacterium tuberculosis (Mtb) to survive in low oxygen environments enables the bacterium to persist in a latent state within host tissues. In vitro studies of Mtb growth have identified changes in isocitrate lyase (ICL) and malate synthase (MS) that enable bacterial persistence under low oxygen and other environmentally limiting(More)