Andrei Fluerasu

Learn More
Slow, nonequilibrium dynamics during delayed sedimentation in a colloidal depletion gel was studied by x-ray photon correlation spectroscopy. The intermediate scattering functions change during the process from stretched to compressed exponential decays, indicating a jamming transition toward full aging. A complex aging behavior follows this process; it is(More)
In this joint experimental-theoretical work we study hydrodynamic interaction effects in dense suspensions of charged colloidal spheres. Using x-ray photon correlation spectroscopy we have determined the hydrodynamic function H(q), for a varying range of electrosteric repulsion. We show that H(q) can be quantitatively described by means of a novel Stokesian(More)
Colloidal suspensions are characterized by a variety of microscopic interactions, which generate unconventional phase diagrams encompassing fluid, gel and glassy states and offer the possibility to study new phase and/or state transitions. Among these, glass-glass transitions are rare to be found, especially at ambient conditions. Here, through a(More)
The order-disorder phase transition in Cu3Au has been studied by x-ray intensity fluctuation spectroscopy. Following a quench from the high-temperature, disordered phase, the ordering kinetics is well described by a universal scaling form that can be measured by time-resolved (incoherent) x-ray scattering. By using coherent scattering, we have measured the(More)
Above the lower critical solution temperature T(c) (ca. 34 degrees C), poly(N-isopropylacrylamide) hydrogels become weakly hydrophobic and undergo microphase separation. Macroscopic deswelling, however, is extraordinarily slow, the out-of equilibrium state of the gel being conserved for many days. In this article the structure of the microphase-separated(More)
The dynamic behavior of a hard-sphere colloidal suspension was studied by x-ray photon correlation spectroscopy and small-angle x-ray scattering over a wide range of particle volume fractions. The short-time mobility of the particles was found to be smaller than that of free particles even at relatively low concentrations, showing the importance of indirect(More)
A new approach is proposed for measuring structural dynamics in materials from multi-speckle scattering patterns obtained with partially coherent X-rays. Coherent X-ray scattering is already widely used at high-brightness synchrotron lightsources to measure dynamics using X-ray photon correlation spectroscopy, but in many situations this experimental(More)
X-ray photon correlation spectroscopy was used to probe the diffusive dynamics of colloidal particles in a shear flow. Combining X-ray techniques with microfluidics is an experimental strategy that reduces the risk of X-ray-induced beam damage and also allows time-resolved studies of processes taking place in flow cells. The experimental results and(More)
Coherent X-ray scattering is an emerging technique for measuring structure at the nanoscale. Data management and analysis is becoming a bottleneck in this technique. We present an unsupervised method which can sort and cluster the scattering snapshots, uncovering patterns inherent in the data. Our algorithm operates without resorting to templates, specific(More)
X-ray Photon Correlation Spectroscopy was used to measure the diffusive dynamics of colloidal particles in a shear flow. The results presented here show how the intensity autocorrelation functions measure both the diffusive dynamics of the particles and their flow-induced, convective motion. However, in the limit of low flow/shear rates, it is possible to(More)