Learn More
The establishment and maintenance of Epstein-Barr Virus (EBV) latent infection requires distinct viral gene expression programs. These gene expression programs, termed latency types, are determined largely by promoter selection, and controlled through the interplay between cell-type specific transcription factors, chromatin structure, and epigenetic(More)
Herpesvirus persistence requires a dynamic balance between latent and lytic cycle gene expression, but how this balance is maintained remains enigmatic. We have previously shown that the Kaposi's Sarcoma-Associated Herpesvirus (KSHV) major latency transcripts encoding LANA, vCyclin, vFLIP, v-miRNAs, and Kaposin are regulated, in part, by a chromatin(More)
Disruption of cellular metabolic processes and usurpation of host proteins are hallmarks of herpesvirus lytic infection. Epstein-Barr virus (EBV) lytic replication is initiated by the immediate-early protein Zta. Zta is a multifunctional DNA binding protein that stimulates viral gene transcription, nucleates a replication complex at the viral origin of(More)
Recombination-like structures formed at origins of DNA replication may contribute to replication fidelity, sister chromatid cohesion, chromosome segregation, and overall genome stability. The Epstein-Barr Virus (EBV) origin of plasmid replication (OriP) provides episomal genome stability through a poorly understood mechanism. We show here that(More)
The mechanisms that coordinate the termination of DNA replication with progression through mitosis are not completely understood. The human Timeless protein (Tim) associates with S phase replication checkpoint proteins Claspin and Tipin, and plays an important role in maintaining replication fork stability at physical barriers, like centromeres, telomeres(More)
UNLABELLED Epstein-Barr virus (EBV) establishes latent infections as multicopy episomes with complex patterns of viral gene transcription and chromatin structure. The EBV origin of plasmid replication (OriP) has been implicated as a critical control element for viral transcription, as well as viral DNA replication and episome maintenance. Here, we examine(More)
The histone H3.3 chaperone DAXX is implicated in formation of heterochromatin and transcription silencing, especially for newly infecting DNA virus genomes entering the nucleus. Epstein-Barr virus (EBV) can efficiently establish stable latent infection as a chromatinized episome in the nucleus of infected cells. The EBV tegument BNRF1 is a DAXX-interacting(More)
  • 1