Andreas Weinlich

Learn More
The design of new HEVC extensions comes with the need for careful analysis of internal HEVC codec decisions. Several bitstream analyzers have evolved for this purpose and provide a visualization of encoder decisions as seen from a decoder viewpoint. None of the existing solutions is able to provide actual insight into the encoder and its RDO decision(More)
Medical imaging in hospitals requires fast and efficient image compression to support the clinical work flow and to save costs. Least-squares autoregressive pixel prediction methods combined with arithmetic coding constitutes the state of the art in lossless image compression. However, a high computational complexity of both prevents the application of(More)
Pixelwise linear prediction using backward-adaptive least-squares or weighted least-squares estimation of prediction coefficients is currently among the state-of-the-art methods for lossless image compression. While current research is focused on mean intensity prediction of the pixel to be transmitted, best compression requires occurrence probability(More)
We present a new method for data-adaptive compression of dense vector fields in dynamic medical volume data. Conventional block-based motion compensation used for temporal prediction in video compression cannot conveniently cope with deformable motion typically found in medical image sequences encoded over time. Based on an approximation of physiologic(More)
  • 1