Learn More
BACKGROUND Invertebrate nervous systems are highly disparate between different taxa. This is reflected in the terminology used to describe them, which is very rich and often confusing. Even very general terms such as 'brain', 'nerve', and 'eye' have been used in various ways in the different animal groups, but no consensus on the exact meaning exists. This(More)
Gastropods are members of the Spiralia, a diverse group of invertebrates that share a common early developmental program, which includes spiral cleavage and a larval trochophore stage. The spiral cleavage program results in the division of the embryo into four quadrants. Specification of the dorsal (D) quadrant is intimately linked with body plan(More)
Recent interpretations of developmental gene expression patterns propose that the last common metazoan ancestor was segmented, although most animal phyla show no obvious signs of segmentation. Developmental studies of non-model system trochozoan taxa may shed light on this hypothesis by assessing possible cryptic segmentation patterns. In this paper, we(More)
The nervous system of nauplii of the crustacean taxon Cirripedia was analysed in the species Balanus improvisus Darwin, 1854 using for the first time immunocytochemical staining against serotonin, RFamide and alpha-tubulin in combination with confocal laser scanning microscopy. This approach revealed a circumoesophageal neuropil ring with nerves extending(More)
Whole-mount technique using fluorescent-labelled phalloidin for actin staining and confocal laser scanning microscopy as well as semi-thin serial sectioning, scanning and transmission electron microscopy were applied to investigate the ontogeny of the various muscular systems during larval development in the limpets Patella vulgata L. and P. caerulea L. In(More)
Inferences concerning the evolution of invertebrate nervous systems are often hampered by the lack of a solid data base for little known but phylogenetically crucial taxa. In order to contribute to the discussion concerning the ancestral neural pattern of the Lophotrochozoa (a major clade that includes a number of phyla that exhibit a ciliated larva in(More)
BACKGROUND In order to increase the weak database concerning the organogenesis of Acoela - a clade regarded by many as the earliest extant offshoot of Bilateria and thus of particular interest for studies concerning the evolution of animal bodyplans - we analyzed the development of the musculature of Symsagittifera roscoffensis using F-actin labelling,(More)
Mollusca is an extremely diverse animal phylum that includes the aculiferans (worm-like aplacophorans and eight-shelled polyplacophorans) and their sister group, the conchiferans, comprising monoplacophorans, bivalves (clams, mussels), gastropods (snails, slugs), scaphopods (tusk shells) and cephalopods (squids, octopuses). Studies on mollusks have revealed(More)
Due to its proposed basal position in the bilaterian Tree of Life, Acoela may hold the key to our understanding of the evolution of a number of bodyplan features including the central nervous system. In order to contribute novel data to this discussion we investigated the distribution of α-tubulin and the neurotransmitters serotonin and RFamide in juveniles(More)
Mollusks are a showcase of brain evolution represented by several classes with a varying degree of nervous system centralization. Cellular and molecular processes involved in the evolution of the highly complex cephalopod brain from a simple, monoplacophoran-like ancestor are still obscure and homologies on the cellular level are poorly established.(More)