Learn More
BACKGROUND Volatile anesthetics facilitate surgical procedures and imaging studies in millions of children every year. Neuronal cell death after prolonged exposure to isoflurane in developing animals has raised serious concerns regarding its safe use in children. Although sevoflurane and desflurane are becoming more popular for pediatric anesthesia, their(More)
BACKGROUND Neuronal cell death after general anesthesia has recently been documented in several immature animal models. Worldwide, volatile anesthetics are used in millions of young children every year during surgical procedures and imaging studies. The possibility of anesthesia-induced neurotoxicity during an uneventful anesthetic in neonates or infants(More)
Although previously considered entirely reversible, general anaesthesia is now being viewed as a potentially significant risk to cognitive performance at both extremes of age. A large body of preclinical as well as some retrospective clinical evidence suggest that exposure to general anaesthesia could be detrimental to cognitive development in young(More)
All routinely utilized sedatives and anesthetics have been found neurotoxic in a wide variety of animal species, including non-human primates. Neurotoxic effects observed in animals include histologic evidence for apoptotic neuronal cell death and subsequent learning and memory impairment. Several cohort studies in neonates with significant comorbidities(More)
BACKGROUND Volatile anesthetics, such as isoflurane, are widely used in infants and neonates. Neurodegeneration and neurocognitive impairment after exposure to isoflurane, midazolam, and nitrous oxide in neonatal rats have raised concerns regarding the safety of pediatric anesthesia. In neonatal mice, prolonged isoflurane exposure triggers hypoglycemia,(More)
BACKGROUND Despite improvements in neonatal heart surgery, neurologic complications continue to occur from low-flow cardiopulmonary bypass (LF-CPB) and deep hypothermic circulatory arrest (DHCA). Desflurane confers neuroprotection against ischemia at normothermia and for DHCA. This study compared neurologic outcome of a desflurane-based with a(More)
In neonatal rodents, isoflurane has been shown to confer neurological protection during hypoxia-ischemia and to precipitate neurodegeneration after prolonged exposure. Whether neuroprotection or neurotoxicity result from a direct effect of isoflurane on the brain or an indirect effect through hemodynamic or metabolic changes remains unknown. We recorded(More)
BACKGROUND Deep hypothermic circulatory arrest (DHCA), as used in infant heart surgery, carries a risk of brain injury. In a piglet DHCA model, neocortical neurons appear to undergo apoptotic death. Caspases, cytochrome c, tumor necrosis factor (TNF), and Fas play a role in apoptosis in many ischemic models. This study examined the expression of these(More)
BACKGROUND Anesthetics induce widespread cell death, permanent neuronal deletion, and neurocognitive impairment in immature animals, raising substantial concerns about similar effects occurring in young children. Epidemiologic studies have been unable to sufficiently address this concern, in part due to reliance on group-administered achievement tests,(More)
BACKGROUND Accumulating evidence indicates that isoflurane and other, similarly acting anesthetics exert neurotoxic effects in neonatal animals. However, neither the identity of dying cortical cells nor the extent of cortical cell loss has been sufficiently characterized. We conducted the present study to immunohistochemically identify the dying cells and(More)