Andreas Vilcinskas

Learn More
Nitrification is a fundamental component of the global nitrogen cycle and leads to significant fertilizer loss and atmospheric and groundwater pollution. Nitrification rates in acidic soils (pH < 5.5), which comprise 30% of the world's soils, equal or exceed those of neutral soils. Paradoxically, autotrophic ammonia oxidizing bacteria and archaea, which(More)
Tribolium castaneum is a member of the most species-rich eukaryotic order, a powerful model organism for the study of generalized insect development, and an important pest of stored agricultural products. We describe its genome sequence here. This omnivorous beetle has evolved the ability to interact with a diverse chemical environment, as shown by large(More)
The production of peptides and small proteins with microbicidal activity collectively called antimicrobial peptides (AMPs) is commonly considered to be a primitive mechanism of immunity and has been extensively studied in insects and other non-vertebrate organisms. In addition, a variety of AMPs present in amphibian skin secretion has been well(More)
Recent genomic analyses of arthropod defense mechanisms suggest conservation of key elements underlying responses to pathogens, parasites and stresses. At the center of pathogen-induced immune responses are signaling pathways triggered by the recognition of fungal, bacterial and viral signatures. These pathways result in the production of response(More)
The red flour beetle, Tribolium castaneum, is an established genetically tractable model insect for evolutionary and developmental studies. Therefore, it may also represent a valuable model for comparative analysis of insect immunity. Here, we used the suppression subtractive hybridization method to identify Tribolium genes that are transcriptionally(More)
Most insects mount a potent antimicrobial defence upon contact with microbes or microbe-associated pattern molecules. Using a combined set of methods for analysis of insect innate immunity, we report here that piercing of the pea aphid Acyrthosiphon pisum with a bacteria-contaminated needle elicits lysozyme-like activity in the haemolymph but no detectable(More)
Although eusociality evolved independently within several orders of insects, research into the molecular underpinnings of the transition towards social complexity has been confined primarily to Hymenoptera (for example, ants and bees). Here we sequence the genome and stage-specific transcriptomes of the dampwood termite Zootermopsis nevadensis (Blattodea)(More)
Lepidopteran insects provide important model systems for innate immunity of insects, particularly for cell biology of hemocytes and biochemical analyses of plasma proteins. Caterpillars are also among the most serious agricultural pests, and understanding of their immune systems has potential practical significance. An early response to infection in(More)
The olfactory sense detects a plethora of behaviorally relevant odor molecules; gene families involved in olfaction exhibit high diversity in different animal phyla. Insects detect volatile molecules using olfactory (OR) or ionotropic receptors (IR) and in some cases gustatory receptors (GRs). While IRs are expressed in olfactory organs across Protostomia,(More)
Lucilia sericata maggots are used world-wide in biosurgery for the medical treatment of nonhealing wounds because they ingest necrotic tissues and significantly promote healing. To gain further insight into interdependencies between ecological adaptation and molecular evolution of innate immunity in Diptera, we used the suppression subtractive hybridization(More)