Learn More
The saccharomicins A and B, produced by the actinomycete Saccharothrix espanaensis, are oligosaccharide antibiotics. They consist of 17 monosaccharide units and the unique aglycon N-(m,p-dihydroxycinnamoyl)taurine. To investigate candidate genes responsible for the formation of trans-m,p-dihydroxycinnamic acid (caffeic acid) as part of the saccharomicin(More)
The entire simocyclinone biosynthetic cluster (sim gene cluster) from the producer Streptomyces antibioticus Tü6040 was identified on six overlapping cosmids (1N1, 5J10, 2L16, 2P6, 4G22, and 1K3). In total, 80.7 kb of DNA from these cosmids was sequenced, and the analysis revealed 49 complete open reading frames (ORFs). These ORFs include genes responsible(More)
Kirromycin is a complex linear polyketide that acts as a protein biosynthesis inhibitor by binding to the bacterial elongation factor Tu. The kirromycin biosynthetic gene cluster was isolated from the producer, Streptomyces collinus Tü 365, and confirmed by targeted disruption of essential biosynthesis genes. Kirromycin is synthesized by a large hybrid(More)
We investigated the changes in gene expression accompanying the development and progression of kidney cancer by use of 31,500-element complementary DNA arrays. We measured expression profiles for paired neoplastic and noncancerous renal epithelium samples from 37 individuals. Using an experimental design optimized for factoring out technological and(More)
Phenalinolactones are terpene glycosides with antibacterial activity. A striking structural feature is a highly oxidized gamma-butyrolactone of elusive biosynthetic origin. To investigate the genetic basis of the phenalinolactones biosynthesis, we cloned and sequenced the corresponding gene cluster from the producer strain Streptomyces sp. Tü6071. Spanning(More)
The potential of actinomycetes to produce natural products has been exploited for decades. Recent genomic sequence analyses have revealed a previously unrecognized biosynthetic potential and diversity. In order to rationally exploit this potential, we have developed a sequence-guided genetic screening strategy. In this "genome mining" approach, genes that(More)
Streptomycetes are the most important bacterial producers of bioactive secondary metabolites such as antibiotics or cytostatics. Due to the emerging resistance of pathogenic bacteria to all commonly used antibiotics, new and modified natural compounds are required for the development of novel drugs. In addition to the classical screening for natural(More)
Finafloxacin is a new fluoroquinolone antibiotic with the unique property of increasing antibacterial activity at pH values lower than neutral. Whereas its antibacterial activity at neutral pH matches that of other quinolones in clinical use, it is expected to surpass this activity in tissues and body fluids acidified by the infection or inflammation(More)
BACKGROUND Streptomyces viridochromogenes Tü57 is the producer of avilamycin A. The antibiotic consists of a heptasaccharide side chain and a polyketide-derived dichloroisoeverninic acid as aglycone. Molecular cloning and characterization of the genes governing the avilamycin A biosynthesis is of major interest as this information might set the direction(More)
A unique characteristic of carbohydrates is their structural diversity which is greater than that of many other classes of biological compounds. Carbohydrate-containing natural products show many different biological activities and some of them have been developed as drugs for medical use. The biosynthesis of carbohydrate-containing natural products is(More)