Andreas Tepe

Learn More
3 Abstract The first sensors of the IceCube neutrino observatory were deployed at the South Pole during the austral summer of 2004-05 and have been producing data since February 2005. One string of 60 sensors buried in the ice and a surface array of 8 ice Cherenkov tanks took data until December 2005 when deployment of the next set of strings and tanks(More)
We report on results of an all-sky search for high-energy neutrino events interacting within the IceCube neutrino detector conducted between May 2010 and May 2012. The search follows up on the previous detection of two PeV neutrino events, with improved sensitivity and extended energy coverage down to about 30 TeV. Twenty-six additional events were(More)
IceCube has become the first neutrino telescope with a sensitivity below the TeV neutrino flux predicted from gamma-ray bursts if gamma-ray bursts are responsible for the observed cosmic-ray flux above 10(18)  eV. Two separate analyses using the half-complete IceCube detector, one a dedicated search for neutrinos from pγ interactions in the prompt phase of(More)
We present the results of a search for neutrino point sources using the Ice-Cube data collected between April 2008 and May 2011 with three partially completed configurations of the detector: the 40-, 59-and 79-string configurations. The live-time of this data set are 1,040 days. An unbinned maximum likelihood ratio test was used to search for an excess of(More)
Accurate measurement of neutrino energies is essential to many of the scientific goals of large-volume neutrino telescopes. The fundamental observable in such detectors is the Cherenkov light produced by the transit through a medium of charged particles created in neutrino interactions. The amount of light emitted is proportional to the deposited energy,(More)
The muon and anti-muon neutrino energy spectrum is determined from 2000–2003 AMANDA telescope data using regularised unfolding. This is the first measurement of atmospheric neutrinos in the energy range 2–200 TeV. The result is compared to different atmospheric neutrino models and it is compatible with the atmospheric neutrinos from pion and kaon decays. No(More)
  • R Abbasi, Y Abdou, M Ackermann, J Adams, J A Aguilar, M Ahlers +246 others
  • 2009
We have measured the speed of both pressure waves and shear waves as a function of depth between 80 and 500 m depth in South Pole ice with better than 1% precision. The measurements were made using the South Pole Acoustic Test Setup (SPATS), an array of transmitters and sensors deployed in the ice at South Pole Station in order to measure the acoustic(More)
  • A Achterberg, M Ackermann, J Ahrens, D W Atlee, J N Bahcall, X Bai +195 others
  • 2005
Four years of AMANDA-II data have been searched for neutrinos from point sources. No statistically significant excess of events has been detected, neither integrated in the years 2000 to 2003, nor in the searches for occasional signals. An interesting coincidence of neutrinos with gamma-ray flares emerges when inspecting the time of the events detected from(More)
IceCube is a one-gigaton instrument located at the geographic South Pole, designed to detect cosmic neutrinos, identify the particle nature of dark matter, and study high-energy neutrinos themselves. Simulation of the IceCube detector and processing of data require a significant amount of computational resources. This paper presents the first detailed(More)