Andreas Reschka

Learn More
The Stadtpilot project aims at autonomous driving on Braunschweig's inner city ring road. For this purpose, an autonomous vehicle called “Leonie” has been developed. In October 2010, after two years of research, “Leonie's” abilities were presented in a public demonstration. This vehicle is one of the first worldwide to show the(More)
For the design and test of functional modules of an automated vehicle, it is essential to define interfaces. While interfaces on the perception side, like object lists, point clouds or occupancy grids, are to a certain degree settled already, they are quite vague in the consecutive steps of context modeling and in particular on the side of driving(More)
In this paper, the ability and skill graphs are introduced for modeling vehicle guidance systems in the concept phase of the development process (abilities), for online monitoring of system operation (skills), and to support driving decisions (skill levels) of automated road vehicles and advanced driver assistance systems. Both graphs rely on a(More)
Autonomous driving in urban environments is potentially dangerous since a malfunction of vehicle guidance systems can lead to severe situations for passengers inside the autonomous vehicle and other road users. Therefore both, monitoring the current system operation state by a surveillance system, which is able to detect failures of software and hardware(More)
Driver assistance systems are commonly available in many vehicles. There are systems for safety functions like the Electronic Stability Control, Automatic Traction Control, Anti-lock Brake System and automatic emergency braking. There are also systems for comfort functions like adaptive cruise control with stop and go functionality and combined safety and(More)
Mobile road works on the hard shoulder of German highways bear an increased accident risk for the crew of the protective vehicle which safeguards road works against moving traffic. The project “Automated Unmanned Protective Vehicle for Highway Hard Shoulder Road Works” aims at the unmanned operation of the protective vehicle in order to reduce(More)
The project Automated Unmanned Protective Vehicle for Highway Hard Shoulder Road Works (aFAS) aims to develop an unmanned protective vehicle to reduce the risk of injuries due to crashes for road workers. To ensure functional safety during operation in public traffic the system shall be developed following the ISO 26262 standard. After defining the(More)
The software of electric / electronic vehicle control systems is static in current series vehicles. Most of the systems do not allow maintenance or functional updates, especially in the field of driver assistance systems. Main causes are the testing effort for a software release and the wide variety of different configurations in different vehicle models.(More)