Andreas Podbielski

Learn More
A novel growth phase-associated two-component-type regulator, Fas (fibronectin/fibrinogen binding/haemolytic activity/streptokinase regulator), of Streptococcus pyogenes was identified in the M1 genome sequence, based on homologies to the histidine protein kinase (HPK) and response regulator (RR) part of the Staphylococcus aureus Agr and Streptococcus(More)
Beta-haemolytic streptococci are important human and animal pathogens: their genetic traits that are associated with the ability to infect human hosts remain, however, unclear. The surface protein, Lmb, mediates the adherence of Streptococcus agalactiae to human laminin. For further analysis of the corresponding gene, the adjacent genomic regions were(More)
Streptococcus pyogenes (group A streptococcus [GAS]) is a frequent cause of purulent infections in humans. As potentially important aspects of its pathogenicity, GAS was recently shown to aggregate, form intratissue microcolonies, and potentially participate in multispecies biofilms. In this study, we show that GAS in fact forms monospecies biofilms in(More)
Streptococcus agalactiae is a leading cause of neonatal sepsis and meningitis. Adherence to extracellular matrix proteins is considered an important factor in the pathogenesis of infection, but the genetic determinants of this process remain largely unknown. We identified and sequenced a gene which codes for a putative lipoprotein that exhibits significant(More)
Streptococcus pyogenes (group A streptococcus, GAS) is a very important human pathogen with remarkable adaptation capabilities. Survival within the harsh host surroundings requires sensing potential on the bacterial side, which leads in particular to coordinately regulated virulence factor expression. GAS 'stand-alone' response regulators (RRs) and(More)
The M protein has been postulated to be a major group A streptococcal (GAS) virulence factor because of its contribution to the bacterial resistance to opsonophagocytosis. Direct evidence of this was only provided for GAS strains which expressed a single M protein. The majority of GAS express additional, structurally similar M-related proteins, Mrp and Enn,(More)
Streptococcal pyrogenic exotoxin B (SpeB), a conserved cysteine protease expressed by virtually all Streptococcus pyogenes strains, has recently been shown to be an important virulence factor (S. Lukomski, S. Sreevatsan, C. Amberg, W. Reichardt, M. Woischnik, A. Podbielski, and J. M. Musser, J. Clin. Invest. 99:2574-2580, 1997). Genetic inactivation of SpeB(More)
Within a genomic locus termed the vir regulon, virR genes of opacity factor-nonproducing (OF-) group A streptococci (GAS) are known to control the expression of the genes encoding M protein (emm) and C5a peptidase (scpA) and of virR itself. Within the corresponding genomic locus, opacity factor-producing (OF+) GAS harbor additional emm-related genes(More)
The majority of characterized bacterial dipeptide permeases (Dpp) are membrane-associated complexes of five proteins belonging to the ABC-transporter family. They have been found to be involved in the uptake of essential amino acids, haem production, chemotaxis and sporulation. A 5.8 kb genomic DNA fragment of the serotype M49 group A streptococcal (GAS)(More)
Cysteine proteases have been implicated as important virulence factors in a wide range of prokaryotic and eukaryotic pathogens, but little direct evidence has been presented to support this notion. Virtually all strains of the human bacterial pathogen Streptococcus pyogenes express a highly conserved extracellular cysteine protease known as streptococcal(More)