Learn More
— Multiple-input multiple-output (MIMO) techniques are a key enabling technology for high-rate wireless communications. This paper discusses two ASIC implementations of MIMO sphere decoders. The first ASIC attains maximum-likelihood performance with an average throughput of 73 Mbps at a signal-to-noise ratio (SNR) of 20 dB; the second ASIC shows only a(More)
Multiple-input multiple-output (MIMO) detection algorithms providing soft information for a subsequent channel decoder pose significant implementation challenges due to their high computational complexity. In this paper, we show how sphere decoding can be used as an efficient tool to implement soft-output MIMO detection with flexible trade-offs between(More)
We show that successive cancellation list decoding can be formulated exclusively using log-likelihood ratios. In addition to numerical stability, the log-likelihood ratio based formulation has useful properties that simplify the sorting step involved in successive cancellation list decoding. We propose a hardware architecture of the successive cancellation(More)
—Physical transceiver implementations for multiple-input multiple-output (MIMO) wireless communication systems suffer from transmit-RF (Tx-RF) impairments. In this paper, we study the effect on channel capacity and error-rate performance of residual Tx-RF impairments that defy proper compensation. In particular, we demonstrate that such residual distortions(More)
— From an error rate performance perspective, maximum likelihood (ML) detection is the preferred detection method for multiple-input multiple-output (MIMO) communication systems. However, for high transmission rates a straight forward exhaustive search implementation suffers from prohibitive complexity. The K-best algorithm provides close–to–ML bit error(More)
We describe the VLSI implementation of MIMO detectors that exhibit close-to optimum error-rate performance, but still achieve high throughput at low silicon area. In particular, algorithms and VLSI architectures for sphere decoding (SD) and K-best detection are considered, and the corresponding trade-offs between uncoded error-rate performance, silicon(More)
Personal health monitoring systems can offer a cost-effective solution for human healthcare. To extend the lifetime of health monitoring systems, we propose a near-threshold ultra-low-power multi-core architecture featuring low-power cores, yet capable of executing biomedical applications, with multiple instruction and data memories, tightly coupled through(More)
— The QR decomposition is an important, but often underestimated prerequisite for pseudo-or non-linear detection methods such as successive interference cancellation or sphere decoding for multiple-input multiple-output (MIMO) systems. The ability of concurrent iterative sorting during the QR decomposition introduces a moderate overall latency, but provides(More)