Learn More
Conventional clustering methods typically assume that each data item belongs to a single cluster. This assumption does not hold in general. In order to overcome this limitation, we propose a generative method for clustering vectorial data, where each object can be assigned to multiple clusters. Using a deterministic annealing scheme, our method decomposes(More)
Role mining algorithms address an important access control problem: configuring a role-based access control system. Given a direct assignment of users to permissions, role mining discovers a set of roles together with an assignment of users to roles. The results should closely agree with the direct assignment. Moreover, the roles should be understandable(More)
Multi-label classification assigns a data item to one or several classes. This problem of multiple labels arises in fields like acoustic and visual scene analysis, news reports and medical diagnosis. In a generative framework, data with multiple labels can be interpreted as additive mixtures of emissions of the individual sources. We propose a deconvolution(More)
Exploratory data analysis requires (i) to define a set of patterns hypothesized to exist in the data, (ii) to specify a suitable quantification principle or cost function to rank these patterns and (iii) to validate the inferred patterns. For data clustering, the patterns are object partitionings into k groups; for PCA or truncated SVD, the patterns are(More)
Multi-label classification extends the standard multi-class classification paradigm by dropping the assumption that classes have to be mutually exclusive, i.e., the same data item might belong to more than one class. Multi-label classification has many important applications in e.g. signal processing, medicine, biology and information security, but the(More)
  • 1