Andreas Michael Zeiher

Learn More
Notch signalling is a key intercellular communication mechanism that is essential for cell specification and tissue patterning, and which coordinates critical steps of blood vessel growth. Although subtle alterations in Notch activity suffice to elicit profound differences in endothelial behaviour and blood vessel formation, little is known about the(More)
Nitric oxide (NO) produced by the endothelial NO synthase (eNOS) is a fundamental determinant of cardiovascular homesotasis: it regulates systemic blood pressure, vascular remodelling and angiogenesis. Physiologically, the most important stimulus for the continuous formation of NO is the viscous drag (shear stress) generated by the streaming blood on the(More)
Injury of the endothelial cells by the induction of apoptotic cell death may play an important role in the pathophysiology of atherosclerosis and the progression of inflammatory diseases. Here, we demonstrate an essential role for the ubiquitin-dependent proteasome complex in stimulus-induced degradation of the antiapoptotic protein Bcl-2. Bcl-2 is(More)
BACKGROUND Endothelial vasodilator dysfunction is a characteristic feature of patients at risk for coronary atherosclerosis. Therefore, we prospectively investigated whether coronary endothelial dysfunction predicts disease progression and cardiovascular event rates. METHODS AND RESULTS Coronary vasoreactivity was assessed in 147 patients using the(More)
MicroRNAs (miRs) are small noncoding RNAs that regulate gene expression by binding to target messenger RNAs (mRNAs), leading to translational repression or degradation. Here, we show that the miR-17approximately92 cluster is highly expressed in human endothelial cells and that miR-92a, a component of this cluster, controls the growth of new blood vessels(More)
Physiological levels of shear stress alter the genetic program of cultured endothelial cells and are associated with reduced cellular turnover rates and formation of atherosclerotic lesions in vivo. To test the hypothesis that shear stress (15 dynes/cm2) interferes with programmed cell death, apoptosis was induced in human umbilical venous cells (HUVEC) by(More)
Ageing is the predominant risk factor for cardiovascular diseases and contributes to a significantly worse outcome in patients with acute myocardial infarction. MicroRNAs (miRNAs) have emerged as crucial regulators of cardiovascular function and some miRNAs have key roles in ageing. We propose that altered expression of miRNAs in the heart during ageing(More)
Background—Therapeutic neovascularization may constitute an important strategy to salvage tissue from critical ischemia. Circulating bone marrow– derived endothelial progenitor cells (EPCs) were shown to augment the neovascularization of ischemic tissue. In addition to lipid-lowering activity, hydroxymethyl glutaryl coenzyme A reductase inhibitors (statins)(More)
The programmed form of cell death (apoptosis) is essential for normal development of multicellular organisms. In the past few years, compelling evidence accumulated that dysregulation of apoptosis can lead to embryonal death and is involved in the pathophysiology of various inflammatory and degenerative diseases. Specifically, the occurrence of endothelial(More)
Endothelial progenitor cells (EPCs) contribute to postnatal neovascularization. Risk factors for coronary artery disease reduce the number of EPCs in humans. Since EPC apoptosis might be a potential mechanism to regulate the number of EPCs, we investigated the effects of oxidative stress and HMG-CoA-reductase inhibitors (statins) on EPC apoptosis.(More)