Andreas Mershin

Learn More
Mutations in the neuronal-specific microtubule-binding protein TAU are associated with several dementias and neurodegenerative diseases. However, the effects of elevated TAU accumulation on behavioral plasticity are unknown. We report that directed expression of wild-type vertebrate and Drosophila TAU in adult mushroom body neurons, centers for olfactory(More)
A common explanation of molecular recognition by the olfactory system posits that receptors recognize the structure or shape of the odorant molecule. We performed a rigorous test of shape recognition by replacing hydrogen with deuterium in odorants and asking whether Drosophila melanogaster can distinguish these identically shaped isotopes. We report that(More)
We used computer simulation to calculate the electric dipole moments of the alpha- and beta-tubulin monomers and dimer and found those to be |p(alpha)| = 552D, |p(beta)| = 1193D and |p(alphabeta)| = 1740D, respectively. Independent surface plasmon resonance (SPR) and refractometry measurements of the high-frequency dielectric constant and polarizability(More)
Impedance spectroscopy is a technique that reveals information, such as macromolecular charges and related properties about protein suspensions and other materials. Here we report on impedance measurements over the frequency range of 1 Hz to 1 MHz of alpha-beta tubulin heterodimers suspended in a buffer. These and other polyelectrolyte suspensions show(More)
The high sensitivity of surface-plasmon resonance (SPR) sensors allows measurements of small variations in surface potentials to be made. We studied the changes of the SPR angle when an oscillating electric potential was applied to a gold film on which surface plasmons were excited. The shifts of the SPR resonance angle were observed for various aqueous(More)
Therapeutic Neurofeedback (NFB) using real-time electroencephalography (EEG) data works by reinforcing desired brainwave patterns. Although EEG is a well-established diagnostic tool and EEG-NFB shows great promise for enhancing cognitive performance and treating neurological disorders, proof of its efficacy has been limited. Here we characterize a novel(More)
We would like to thank Dr. Hettinger (1) for his positive comment on our results showing that flies can discriminate isotopes by smell and are capable of cross-learning between odorants sharing a molecular vibration. Our article (2) demonstrated the presence of a physical (vibrational) component to odor character necessitating a vibration-sensing mechanism,(More)
Advances in electroencephalography (EEG) sensors and embedded signal processing modules are driving interest in wearable EEG devices. EEG based Neurofeedback (NFB) works by reinforcing desired brainwave patterns and shows great promise for enhancing performance and treating mental disorders. Yet, both clinical and at-home efficacies remain low. We propose a(More)
Recent advances in the tracking and quantification of pain using consumer-grade wearable EEG headbands, such as Muse [8] and Neurosky [12], coupled to efficient machine learning [9], pave the way towards applying Self-Calibrating Protocols (SCP) [10] and Dynamic Background Reduction (DBR) [11] principles to basic research, while empowering new applications.(More)
In order to create a novel model of memory and brain function, we focus our approach on the sub-molecular (electron), molecular (tubulin) and macromolecular (microtubule) components of the neural cytoskeleton. Due to their size and geometry, these systems may be approached using the principles of quantum physics. We identify quantum-physics derived(More)
  • 1