Andreas Möglich

Learn More
Signaling photoreceptors use the information contained in the absorption of a photon to modulate biological activity in plants and a wide range of organisms. The fundamental-and as yet imperfectly answered-question is, how is this achieved at the molecular level? We adopt the perspective of biophysicists interested in light-dependent signal transduction in(More)
Cellular processes and indeed the survival of entire organisms crucially depend on precise spatiotemporal coordination of a multitude of molecular events. A new tool in cell biology is denoted "optogenetics" which describes the use of genetically encoded, light-gated proteins, i.e. photoreceptors, which perturb and control cellular and organismal behavior(More)
BACKGROUND We have developed the program PERMOL for semi-automated homology modeling of proteins. It is based on restrained molecular dynamics using a simulated annealing protocol in torsion angle space. As main restraints defining the optimal local geometry of the structure weighted mean dihedral angles and their standard deviations are used which are(More)
SUMMARY PERMOL is a new restraint-based program for homology modeling of proteins. Restraints are generated from the information contained in structures of homologous template proteins. Employing the restraints generated by PERMOL, three-dimensional structures are obtained using MD programs such as DYANA or CNS. In contrast to other programs PERMOL is(More)
  • 1