Learn More
Molecular cloning together with functional characterization has shown that the newly identified family of inwardly rectifying K+ channels consists of several closely related members encoded by separate genes. In this report we demonstrate the differential mRNA expression and detailed cellular localization in the adult rat brain of seven members of the IRK(More)
Tandem pore domain acid-sensitive K(+) channel 3 (TASK-3) is a new member of the tandem pore domain potassium channel family. A cDNA encoding a 365- amino acid polypeptide with four putative transmembrane segments and two pore regions was isolated from guinea pig brain. An orthologous sequence was cloned from a human genomic library. Although TASK-3 is 62%(More)
TWIK-related acid-sensitive K(+) (TASK) channels contribute to setting the resting potential of mammalian neurons and have recently been defined as molecular targets for extracellular protons and volatile anesthetics. We have isolated a novel member of this subfamily, hTASK-5, from a human genomic library and mapped it to chromosomal region 20q12-20q13.(More)
Two cDNAs encoding novel K(+) channels, THIK-1 and THIK-2 (tandem pore domain halothane inhibited K(+) channel), were isolated from rat brain. The proteins of 405 and 430 amino acids were 58% identical to each other. Homology analysis showed that the novel channels form a separate subfamily among tandem pore domain K(+) channels. The genes of the human(More)
This summary article presents an overview of the molecular relationships among the voltage-gated potassium channels and a standard nomenclature for them, which is derived from the IUPHAR Compendium of Voltage-Gated Ion Channels. The complete Compendium, including data tables for each member of the potassium channel family can be found at(More)
Introduction Since the initial cDNA cloning of the first inward rectifiers K ir 1.1 (ROMK1) and K ir 2.1 (IRK1) in 1993, a succession of new members of this family have been identified, including the G protein-coupled K ir 3 and the ATP-sensitive K ir 6. These channels play an important physiological role in the function of many organs, including brain,(More)
B-type receptors for the neurotransmitter GABA (gamma-aminobutyric acid) inhibit neuronal activity through G-protein-coupled second-messenger systems, which regulate the release of neurotransmitters and the activity of ion channels and adenylyl cyclase. Physiological and biochemical studies show that there are differences in drug efficiencies at different(More)
1. Bipolar cells were isolated from adult rat retinas after enzymatic and mechanical treatment. The cells could be unequivocally identified from their morphology because of high retention of their axon and dendritic processes after isolation. 2. Protein kinase C (PKC) immunoreactivity performed on sections of the rat retina labeled rod bipolar cells and a(More)
Neuronal G-protein-gated potassium (GIRK) channels mediate the inhibitory effects of many neurotransmitters. Although the overlapping distribution of GIRK subunits suggests that channel composition varies in the CNS, little direct evidence supports the existence of structural or functional diversity in the neuronal GIRK channel repertoire. Here we show that(More)
Signaling via cytosolic and receptor tyrosine kinases is associated with cell growth and differentiation but also targets onto transmitter receptors and ion channels. Here, regulation by tyrosine kinase (TK) activity was investigated for inwardly rectifying K+ (Kir2.1) channels that control membrane excitability in many central neurons. In mammalian tsA-201(More)