Andreas Karschin

Learn More
Neuronal G-protein-gated potassium (GIRK) channels mediate the inhibitory effects of many neurotransmitters. Although the overlapping distribution of GIRK subunits suggests that channel composition varies in the CNS, little direct evidence supports the existence of structural or functional diversity in the neuronal GIRK channel repertoire. Here we show that(More)
The basophilic leucaemia cell line RBL-2H3 exhibits a robust inwardly rectifying potassium current, I KIR, which is likely to be modulated by G proteins. We examined the physiological and molecular properties of this KIR conductance to define the nature of the underlying channel species. The macroscopic conductance revealed characteristics typical of(More)
This summary article presents an overview of the molecular relationships among the voltage-gated potassium channels and a standard nomenclature for them, which is derived from the IUPHAR Compendium of Voltage-Gated Ion Channels. The complete Compendium, including data tables for each member of the potassium channel family can be found at(More)
The two-pore-domain potassium channels TASK-1, TASK-3 and TASK-5 possess a conserved C-terminal motif of five amino acids. Truncation of the C-terminus of TASK-1 strongly reduced the currents measured after heterologous expression in Xenopus oocytes or HEK293 cells and decreased surface membrane expression of GFP-tagged channel proteins. Two-hybrid analysis(More)
The interaction of the adaptor protein p11, also denoted S100A10, with the C-terminus of the two-pore-domain K+ channel TASK-1 was studied using yeast two-hybrid analysis, glutathione S-transferase pull-down, and co-immunoprecipitation. We found that p11 interacts with a 40 amino-acid region in the proximal C-terminus of the channel. In heterologous(More)
1. The respiratory centre within the brainstem is one of the most active neuronal networks that generates ongoing rhythmic activity. Stabilization of such vital activity requires efficient processes for activity-correlated adjustment of neuronal excitability. Recent investigations have shown that a regulatory factor coupling electrical activity with cell(More)
Two novel alternatively spliced isoforms of the human two-pore-domain potassium channel TREK-2 were isolated from cDNA libraries of human kidney and fetal brain. The cDNAs of 2438 base pairs (bp) (TREK-2b) and 2559 bp (TREK-2c) encode proteins of 508 amino acids each. RT-PCR showed that TREK-2b is strongly expressed in kidney (primarily in the proximal(More)
Division of Biophysics and Neurobiology, Department of Molecular Physiology, National Institute for Physiological Sciences, Myodaiji, Okazaki, Aichi, Japan (Y.K.); Vollum Institute, Oregon Health Sciences University, Portland, Oregon (J.P.A.); Howard Hughes Medical Institute, Children’s Hospital, Harvard Medical School, Boston, Massachusetts (D.E.C.);(More)
Tyrosine side chains participate in several distinct signaling pathways, including phosphorylation and membrane trafficking. A nonsense suppression procedure was used to incorporate a caged tyrosine residue in place of the natural tyrosine at position 242 of the inward rectifier channel Kir2.1 expressed in Xenopus oocytes. When tyrosine kinases were active,(More)
Parkinson's disease is the most frequent movement disorder caused by loss of dopaminergic neurons in the midbrain. Intentions to avoid side effects of the conventional therapy should aim to identify additional targets for potential pharmacological intervention. In principle, every step of a signal transduction cascade such as presynaptic transmitter(More)