Andreas Ibrom

Learn More
Carbon exchange between the terrestrial biosphere and the atmosphere is one of the key processes that need to be assessed in the context of the Kyoto Protocol. Several studies suggest that the terrestrial biosphere is gaining carbon, but these estimates are obtained primarily by indirect methods, and the factors that control terrestrial carbon exchange, its(More)
• Attempts to combine biometric and eddy-covariance (EC) quantifications of carbon allocation to different storage pools in forests have been inconsistent and variably successful in the past. • We assessed above-ground biomass changes at five long-term EC forest stations based on tree-ring width and wood density measurements, together with multiple(More)
Gross canopy photosynthesis (P(g)) can be simulated with canopy models or retrieved from turbulent carbon dioxide (CO2) flux measurements above the forest canopy. We compare the two estimates and illustrate our findings with two case studies. We used the three-dimensional canopy model MAESTRA to simulate P(g) of two spruce forests differing in age and(More)
Extreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate extremes drive ecological and physiological processes and alter the(More)
Wenping Yuan, Yiqi Luo, Xianglan Li, Shuguang Liu, Guirui Yu, Tao Zhou, Michael Bahn, Andy Black, Ankur R. Desai, Alessandro Cescatti, Barbara Marcolla, Cor Jacobs, Jiquan Chen, Mika Aurela, Christian Bernhofer, Bert Gielen, Gil Bohrer, David R. Cook, Danilo Dragoni, Allison L. Dunn, Damiano Gianelle, Thomas Grünwald, Andreas Ibrom, Monique Y. Leclerc,(More)
Photosynthetically active radiation (Q)-use efficiency (epsilon) is an important parameter for deriving carbon fluxes between forest canopies and the atmosphere from meteorological ground and remote sensing data. A common approach is to assume gross primary production (P(g)) and net primary production (P(n)) are proportional to Q absorbed by vegetation(More)
Carbon (C) and nitrogen (N) cycling under future climate change is associated with large uncertainties in litter decomposition and the turnover of soil C and N. In addition, future conditions (especially altered precipitation regimes and warming) are expected to result in changes in vegetation composition, and accordingly in litter species and chemical(More)
There is an ongoing debate on how to correct leaf gas exchange measurements for the unavoidable diffusion leakage that occurs when measurements are done in non-ambient CO2 concentrations. In this study, we present a theory on how the CO2 diffusion gradient over the gasket is affected by leaf-mediated pores (LMP) and how LMP reduce diffusive exchange across(More)
Tropospheric O3 is a strong oxidant that may affect vegetation and human health. Here we report on the O3 fluxes from a poplar plantation in Belgium during one year. Surprisingly, the winter and autumn O3 fluxes were of similar magnitude to ones observed during most of the peak vegetation development. Largest O3 uptakes were recorded at the beginning of the(More)