Learn More
Positive crop yield effects from biochar are likely explained by chemical, physical and/or biological factors. However, studies describing plant allometric changes are scarcer, but may be crucial to understand the biochar effect. The main aim of the present study is to investigate the effect of biochar on root architecture under field conditions in a(More)
Plant phenotyping refers to a quantitative description of the plant’s anatomical, ontogenetical, physiological and biochemical properties. Today, rapid developments are taking place in the field of non-destructive, image-analysis -based phenotyping that allow for a characterization of plant traits in high-throughput. During the last decade, ‘the field of(More)
Field-based high throughput phenotyping is a bottleneck for crop breeding research. We present a novel method for repeated remote phenotyping of maize genotypes using the Zeppelin NT aircraft as an experimental sensor platform. The system has the advantage of a low altitude and cruising speed compared to many drones or airplanes, thus enhancing image(More)
A quantitative characterization of root system architecture is currently being attempted for various reasons. Non-destructive, rapid analyses of root system architecture are difficult to perform due to the hidden nature of the root. Hence, improved methods to measure root architecture are necessary to support knowledge-based plant breeding and to analyse(More)
Root system architecture traits (RSAT) are crucial for crop productivity, especially under drought and low soil fertility. The “shovelomics” method of field excavation of mature root crowns followed by manual phenotyping enables a relatively high throughput as needed for breeding and quantitative genetics. We aimed to develop a new sampling protocol in(More)
Selection for deep roots to improve drought tolerance of maize (Zea mays L.) requires presence of genetic variation and suitable screening methods. We examined a diverse set of 33 tropical maize inbred lines that were grown in growth columns in the greenhouse up to the 2-, 4-, and 6-leaf stage and in the field in Mexico. To determine length of roots from(More)
The root surface of a plant usually exceeds the leaf area and is constantly exposed to a variety of soil-borne microorganisms. Root pathogens and pests, as well as belowground interactions with beneficial microbes, can significantly influence a plants' performance. Unfortunately, the analysis of these interactions is often limited because of the arduous(More)
The objective of this study was to elucidate the genetic relationship between the specific leaf area (SLA) and the photosynthetic performance of maize (Zea mays L.) as dependent on growth temperature. Three sets of genotypes: (i) 19 S 5 inbred lines, divergently selected for high or low operating efficiency of photosystem II (U PSII) at low temperature,(More)
The plant's root system is highly plastic, and can respond to environmental stimuli such as high nitrogen (N) in patches. A root may respond to an N patch by selective placement of new lateral roots, and therewith increases root N uptake. This may be a desirable trait in breeding programmes, since it decreases NO3(-) leaching and N2O emission. Roots of(More)
Phosphorus (P) is frequently limiting crop production in agroecosystems. Large progress was achieved in understanding root traits associated with P acquisition efficiency (PAE, i.e. P uptake achieved under low P conditions). Most former studies were performed in controlled environments, and avoided the complexity of soil-root interactions. This may lead to(More)