Learn More
Sister chromatids are held together by the multisubunit cohesin complex, which contains two SMC (Smc1 and Smc3) and two non-SMC (Scc1 and Scc3) proteins. The crystal structure of a bacterial SMC "hinge" region along with EM studies and biochemical experiments on yeast Smc1 and Smc3 proteins show that SMC protamers fold up individually into rod-shaped(More)
The nonrandom distribution of meiotic recombination influences patterns of inheritance and genome evolution, but chromosomal features governing this distribution are poorly understood. Formation of the DNA double-strand breaks (DSBs) that initiate recombination results in the accumulation of Spo11 protein covalently bound to small DNA fragments. By(More)
Tight control of the number and distribution of crossovers is of great importance for meiosis. Crossovers establish chiasmata, which are physical connections between homologous chromosomes that provide the tension necessary to align chromosomes on the meiotic spindle. Understanding the mechanisms underlying crossover control has been hampered by the(More)
BACKGROUND Every chromosome requires at least one crossover to be faithfully segregated during meiosis. At least two levels of regulation govern crossover distribution: where the initiating DNA double-strand breaks (DSBs) occur and whether those DSBs are repaired as crossovers. RESULTS We mapped meiotic DSBs in budding yeast by identifying sites of(More)
The meiotic recombination checkpoint delays gamete precursors in G2 until DNA breaks created during recombination are repaired and chromosome structure has been restored. Here, we show that the FK506 binding protein Fpr3 prevents premature adaptation to damage and thus serves to maintain recombination checkpoint activity. Impaired checkpoint function is(More)
Numerous DNA double-strand breaks (DSBs) are introduced into the genome in the course of meiotic recombination. This poses a significant hazard to the genomic integrity of the cell. Studies in a number of organisms have unveiled the existence of surveillance mechanisms or checkpoints that couple the formation and repair of DSBs to cell cycle progression.(More)
The coordinated execution of cell cycle processes during meiosis is essential for the production of viable gametes and fertility. Coordination is particularly important during meiotic prophase, when nuclei undergo a dramatic reorganization that requires the precise choreography of chromosome movements, pairing interactions and DNA double-strand break (DSB)(More)
The faithful alignment of homologous chromosomes during meiotic prophase requires the coordination of DNA double-strand break (DSB) repair with large-scale chromosome reorganization. Here we identify the phosphatase PP4 (Pph3/Psy2) as a mediator of this process in Saccharomyces cerevisiae. In pp4 mutants, early stages of crossover repair and(More)
During gamete formation, crossover recombination must occur on replicated DNA to ensure proper chromosome segregation in the first meiotic division. We identified a Mec1/ATR- and Dbf4-dependent replication checkpoint in budding yeast that prevents the earliest stage of recombination, the programmed induction of DNA double-strand breaks (DSBs), when(More)