Learn More
Effects on aversive learning of the novel highly selective mGlu5 receptor antagonist [(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP) and mGlu1 receptor antagonist (3-ethyl-2-methyl-quinolin-6-yl)-(4-methoxy-cyclohexyl)-methanone methanesulfonate (EMQMCM) were tested, after systemic administration, in the passive avoidance (PA) and fear potentiated(More)
Recently, it has been proposed that activation of either metabotropic glutamate receptors e.g. mGlu(5) by positive allosteric modulators or stimulation of mGluR(2/3) receptors by agonists may offer new strategy in schizophrenia treatment. The aim of the present study was to compare the effect of mGlu(5) receptor positive allosteric modulator, ADX47273(More)
Hypoglutamatergic theory of schizophrenia is substantiated by observation that high affinity uncompetitive antagonists of NMDA receptors such as PCP can induce psychotic symptoms in humans. Recently, metabotropic glutamate receptors of the mGluR5 type have also been discussed as possible players in this disease. However, less is known about the potential(More)
5-Hydroxytryptamine 6 (5-HT6) receptors are involved in learning and memory processes and are discussed as promising targets for the treatment of cognitive impairment in central nervous system disorders. A number of 5-HT6 antagonists are currently in the clinical development for schizophrenia and Alzheimer's disease (AD). There is some discrepancy regarding(More)
Glutamatergic neurotransmission in the CNS plays a predominant role in learning and memory. While NMDA receptors have been extensively studied, less is known about the involvement of group I metabotropic glutamate receptors in this area. The purpose of the present study was to evaluate the contribution of mGluR1 and mGluR5 to both acquisition and expression(More)
It has been proposed that glutamatergic transmission, in particular NMDA receptor function, might be altered in schizophrenia. This hypothesis is mainly based on the observation that uncompetitive NMDA receptor antagonists, e.g. phencyclidine, evoke psychotic symptoms in healthy subjects, whereas agonists interacting at the glycine site of the NMDA receptor(More)
The non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist (+)MK-801 is widely used in animal research (over 3000 publications), however its extracellular brain concentration has never been reported. Here, we show using in vivo microdialysis that systemic injection of (+)MK-801 at doses of 0.05, 0.1 or 0.2mg/kg resulted in peak brain ECF(More)
The aim of the present paper was to study the effects of GABAA receptor-positive modulators (L-838417 and NS11394) showing a preference for α2/3 subunits of the GABAA receptor, in models of pain, anxiety, learning, memory and motor function. These compounds have been suggested to have a favourable therapeutic profile over nonselective compounds such as(More)
In the present study, we evaluated the effects of subchronic blockade of mGluR5 by 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP) on learning, anxiety and levodopa-induced dyskinesia in rats. In addition, we excluded the possibility that subchronic treatment produced pharmacokinetic changes using brain microdialysis. MTEP (5 mg/kg) impaired spatial(More)
The role of glutamatergic system in learning and memory has been extensively studied, and especially N-methyl-d-aspartate (NMDA) receptors have been implicated in different learning and memory processes. Less is known, however, about group I metabotropic glutamate (mGlu) receptors in this field. Recent studies indicated that the coactivation of both NMDA(More)