Learn More
Today, visual recognition systems are still rarely employed in robotics applications. Perhaps one of the main reasons for this is the lack of demanding benchmarks that mimic such scenarios. In this paper, we take advantage of our autonomous driving platform to develop novel challenging benchmarks for the tasks of stereo, optical flow, visual odometry/SLAM(More)
—We present a novel dataset captured from a VW station wagon for use in mobile robotics and autonomous driving research. In total, we recorded 6 hours of traffic scenarios at 10-100 Hz using a variety of sensor modalities such as high-resolution color and grayscale stereo cameras, a Velodyne 3D laser scanner and a high-precision GPS/IMU inertial navigation(More)
In this paper we propose a novel approach to binocular stereo for fast matching of high-resolution images. Our approach builds a prior on the disparities by forming a triangulation on a set of support points which can be robustly matched, reducing the matching ambiguities of the remaining points. This allows for efficient exploitation of the disparity(More)
Accurate 3d perception from video sequences is a core subject in computer vision and robotics, since it forms the basis of subsequent scene analysis. In practice however, online requirements often severely limit the utilizable camera resolution and hence also reconstruction accuracy. Furthermore, real-time systems often rely on heavy parallelism which can(More)
This paper proposes a novel model and dataset for 3D scene flow estimation with an application to autonomous driving. Taking advantage of the fact that outdoor scenes often decompose into a small number of independently moving objects, we represent each element in the scene by its rigid motion parameters and each superpixel by a 3D plane as well as an index(More)
A common prerequisite for many vision-based driver assistance systems is the knowledge of the vehicle's own movement. In this paper we propose a novel approach for estimating the egomotion of the vehicle from a sequence of stereo images. Our method is directly based on the trifocal geometry between image triples, thus no time expensive recovery of the(More)
Detecting the road area and ego-lane ahead of a vehicle is central to modern driver assistance systems. While lane-detection on well-marked roads is already available in modern vehicles, finding the boundaries of unmarked or weakly marked roads and lanes as they appear in inner-city and rural environments remains an unsolved problem due to the high(More)
In dimensionality reduction approaches, the data are typically embedded in a Euclidean latent space. However for some data sets this is inappropriate. For example, in human motion data we expect latent spaces that are cylindrical or a toroidal, that are poorly captured with a Euclidean space. In this paper, we present a range of approaches for embedding(More)
As a core robotic and vision problem, camera and range sensor calibration have been researched intensely over the last decades. However, robotic research efforts still often get heavily delayed by the requirement of setting up a calibrated system consisting of multiple cameras and range measurement units. With regard to removing this burden, we present a(More)
Stereo techniques have witnessed tremendous progress over the last decades, yet some aspects of the problem still remain challenging today. Striking examples are reflecting and textureless surfaces which cannot easily be recovered using traditional local regularizers. In this paper, we therefore propose to regularize over larger distances using(More)