Learn More
This is a discussion document for the IEEE document of the IEEE 802.15.4a channel modeling subgroup. It provides models for the following frequency ranges and environments: for UWB channels dovering the frequency range from 2 to 10 GHz, it covers indoor residential, indoor office, industrial, outdoor, and open outdoor environments (usually with a(More)
This article describes the modeling of ultra-wideband wireless propagation channels, especailly for the simulation of personal area networks. The IEEE 802.15.3a standards task group has established a standard channel model to be used for the evaluation of PAN physical layer proposals. We discuss the standard model, the measurements that form its basis, and(More)
A comprehensive statistical model is described for ultrawideband (UWB) propagation channels that is valid for a frequency range from 3-10 GHz. It is based on measurements and simulations in the following environments: residential indoor, office indoor, builtup outdoor, industrial indoor, farm environments, and body area networks. The model is independent of(More)
—We establish a statistical model for the ultra-wide bandwidth (UWB) indoor channel based on an extensive measurement campaign in a typical modern office building with 2-ns delay resolution. The approach is based on the investigation of the statistical properties of the multipath profiles measured in different rooms over a finely spaced measurement grid.(More)
—We suggest a novel approach to handle the ongoing explosive increase in the demand for video content in wireless/mobile devices. We envision femtocell-like base stations, which we call helpers, with weak backhaul links but large storage capacity. These helpers form a wireless distributed caching network that assists the macro base station by handling(More)
This paper presents an overview of UWB propagation channels. It first demonstrates how the frequency selectivity of propagation processes causes fundamental differences between UWB channels and " conventional " (narrowband) channels. The concept of pathloss has to be modified , and well-known WSSUS model is not applicable anymore. Next, describe(More)
This paper describes the wireless channel model that the IEEE 802.15.3a standardization group has developed for the evaluation of ultrawideband communications systems. We discuss the measurements that form the basis of this model. These measurements establish important differences between UWB channels and narrowband wireless channels, especially with(More)
A look at positioning aspects of future sensor networks. This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include the following: a notice that such(More)
—Vehicle-to-vehicle (VTV) wireless communications have many envisioned applications in traffic safety and congestion avoidance, but the development of suitable communications systems and standards requires accurate models for the VTV propagation channel. In this paper, we present a new wideband multiple-input-multiple-output (MIMO) model for VTV channels(More)