Andreas Degenhard

Learn More
This paper presents a novel method for validation of nonrigid medical image registration. This method is based on the simulation of physically plausible, biomechanical tissue deformations using finite-element methods. Applying a range of displacements to finite-element models of different patient anatomies generates model solutions which simulate gold(More)
We present a novel validation method for non-rigid registration using a simulation of deformations based on biomechanical modelling of tissue properties. This method is tested on a previously developed non-rigid registration method for dynamic contrast enhanced Magnetic Resonance (MR) mammography image pairs [1]. We have constructed finite element breast(More)
In this paper, we present an evaluation study of a set of registration strategies for the alignment of sequences of 3D dynamic contrast-enhanced magnetic resonance breast images. The accuracy of the optimal registration strategies was determined on unseen data. The evaluation is based on the simulation of physically plausible breast deformations using(More)
OBJECTIVE In this work, methods utilizing supervised and unsupervised machine learning are applied to analyze radiologically derived morphological and calculated kinetic tumour features. The features are extracted from dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) time-course data. MATERIAL The DCE-MRI data of the female breast are(More)
In medical image analysis the image content is often represented by features computed from the pixel matrix in order to support the development of improved clinical diagnosis systems. These features need to be interpreted and understood at a clinical level of understanding Many features are of abstract nature, as for instance features derived from a wavelet(More)
This paper presents a validation study for non-rigid registration of 3D contrast enhanced magnetic resonance mammography images. We compare the performance of two non-rigid registration algorithms based on singleand multilevel free-form deformations using B-splines and normalized mutual information. To assess the registration performance, we employ a(More)