Andreas Bauer

Learn More
This article studies runtime verification of properties expressed either in lineartime temporal logic (LTL) or timed lineartime temporal logic (TLTL). It classifies runtime verification in identifying its distinguishing features to model checking and testing, respectively. It introduces a three-valued semantics (with truth values <i>true, false,(More)
When monitoring a system wrt. a property defined in a temporal logic such as LTL, a major concern is to settle with an adequate interpretation of observable system events; that is, models of temporal logic formulae are usually infinite words of events, whereas at runtime only finite but incrementally expanding prefixes are available. In this work, we review(More)
Users wanting to monitor distributed or component-based systems often perceive them as monolithic systems which, seen from the outside, exhibit a uniform behaviour as opposed to many components displaying many local behaviours that together constitute the system’s global behaviour. This level of abstraction is often reasonable, hiding implementation details(More)
This paper introduces a method and tool-support for the automatic analysis and verification of hybrid and embedded control systems, whose continuous dynamics are often modelled using MATLAB/Simulink. The method is based upon converting system models into the uniform input language of our efficient multi-domain constraint solving library, <i>ABSOLVER</i>,(More)
When monitoring a system wrt. a property defined in a temporal logic such as LTL, a major concern is to settle with an adequate interpretation of observable system events; that is, models of temporal logic formulae are usually infinite words of events, whereas at runtime only finite but incrementally expanding prefixes are available. In this work, we review(More)
Situation Awareness (SA) is the problem of comprehending elements of an environment within a volume of time and space. It is a crucial factor in decision-making in dynamic environments. Current SA systems support the collection, filtering and presentation of data from different sources very well, and typically also support some form of low-level data fusion(More)
This paper presents Salt. Salt is a general purpose specification and assertion language developed for creating concise temporal specifications to be used in industrial verification environments. It incorporates ideas of existing approaches, such as specification patterns, but also provides nested scopes, exceptions, support for regular expressions and(More)
Formulae of linear temporal logic (LTL) can be used to specify (wanted or unwanted) properties of a dynamical system. In model checking, the system’s behavior is described by a transition system, and one needs to check whether all possible traces of this transition system satisfy the formula. In runtime verification, one observes the actual system behavior,(More)