Andreas A. Neuber

Learn More
An all solid-state, megawatt-class high power microwave system featuring a silicon carbide (SiC) photoconductive semiconductor switch (PCSS) and a ferrimagnetic-based, coaxial nonlinear transmission line (NLTL) is presented. A 1.62 cm(2), 50 kV 4H-SiC PCSS is hard-switched to produce electrical pulses with 7 ns full width-half max (FWHM) pulse widths at 2(More)
A simple laser-induced-fluorescence measurement technique for turbulent flame temperature and OH concentration measurement is proposed and successfully tested. The main idea is that a narrow-band tunable excimer laser beam (λ = 308 nm) is focused into a turbulent atmospheric-pressure nonpremixed flame. The OH molecule Q(1)(3) (X(2)II υ″ = 0, A(2)Σ+υ″ = 0)(More)
Compact Pulsed Power Systems (CPPSs) require power sources that are small in size yet can produce the necessary electrical energy required to drive a given load. Helical Flux Compression Generators (HFCGs) are attractive for single shot applications due to their rapid conversion of chemical energy to electrical energy. Midsized generators occupy little(More)
Implementing nonlinear transmission line (NLTL) technology in the design of a high power microwave source has the benefits of producing a comparatively small and lightweight solid-state system where the emission frequency is easily tuned. Usually, smaller in physical size, single NLTLs may produce significantly less power than its vacuum based counterparts.(More)
A software controllable system which generates and transmits user defined RF signals is discussed. The system is implemented with multiple, modular transmitting channels that allow the user to easily replace parts such as amplifiers or antennas. Each channel is comprised of a data pattern generator (DPG), a digital to analog converter (DAC), a power(More)
This paper presents a study on energy deposition and electromagnetic compatibility of match-type electroexplosive devices (EEDs), which recently have found more usage in pulsed power environments with high electromagnetic interference (EMI) background. The sensitivity of these devices makes them dangerous to intended and unintended radiation produced by(More)
This Article is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital Commons. It has been accepted for inclusion in Electrical & Computer Engineering Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu. Repository Citation Majzoobi,(More)
Number #10318 MARX GENERATOR USING PSEUDOSPARK SWITCHES ∗ Andras Kuthi, Ray Alde, and Martin Gundersen, Department of Electrical Engineering – Electrophysics University of Southern California Los Angeles, CA 90089-0271 Andreas Neuber Department of Electrical & Computer Engineering Texas Tech University Lubbock, TX 79409-3102 ∗ This work was primarily funded(More)