Andreas A. Ioannides

Learn More
This paper introduces the use of magnetic field tomography (MFT), a noninvasive technique based on distributed source analysis of magnetoencephalography data, which makes possible the three-dimensional reconstruction of dynamic brain activity in humans. MFT has a temporal resolution better than 1 msec and a spatial accuracy of 2-5 mm at the cortical level,(More)
The tomographic localization of activity within human primary visual cortex (striate cortex or V1) was examined using whole-head magnetoencephalography (MEG) and 4-T functional magnetic resonance imaging (fMRI) in four subjects. Circular checkerboard pattern stimuli with radii from 1.8 to 5.2 degrees were presented at eccentricity of 8 degrees and angular(More)
Men and women seem to process emotions and react to them differently. Yet, few neurophysiological studies have systematically investigated gender differences in emotional processing. Here, we studied gender differences using Event Related Potentials (ERPs) and Skin Conductance Responses (SCR) recorded from participants who passively viewed emotional(More)
MEG correlates of the recognition of facial expressions of emotion were studied in four healthy volunteers. Subjects performed a facial emotion recognition task and a control task involving recognition of complex objects including faces. Facial emotion recognition activated inferior frontal cortex, amygdala and different parts of temporal cortex in a(More)
Magnetoencephalography (MEG) is a method which allows the non-invasive measurement of the minute magnetic field which is generated by ion currents in the brain. Due to the complex sensitivity profile of the sensors, the measured data are a non-trivial representation of the currents where information specific to local generators is distributed across many(More)
A variety of clinical and experimental findings suggest that parkinsonian resting tremor results from the involuntary activation of a central mechanism normally used for the production of rapid voluntary alternating movements. However, such central motor loop oscillations have never been directly demonstrated in parkinsonian patients. Using(More)
The MEG signal generated by sinusoidal grating pattern onset at 1 and 3 cpd, presented randomly to the four quadrants, was analyzed in terms of gross signal properties and current dipole modeling and for a subset of subjects with magnetic field tomography (MFT). In all subjects a prominent wave was identified with a peak latency around 70 ms (N70m),(More)
A fundamental question about the neural correlates of attention concerns the earliest sensory processing stage that it can affect. We addressed this issue by recording magnetoencephalography (MEG) signals while subjects performed detection tasks, which required employment of spatial or nonspatial attention, in auditory or visual modality. Using distributed(More)
OBJECTIVE An exploratory data analysis framework, based on minimal spanning tree, is proposed as a means to support the analysis of single trial (ST) electrophysiological signals. The core of this framework is the compact description of the input ST sample in a form of content-dependent ordered lists. Based on the established hierarchies, efficient ways to(More)
We recorded the magnetoencephalographic (MEG) signal from three subjects before, during and after eye movements cued to a tone, self-paced, awake and during rapid eye movement (REM) sleep. During sleep we recorded the MEG signal throughout the night together with electroencephalographic (EEG) and electromyographic (EMG) channels to construct a hypnogram.(More)