Andrea Volterra

Learn More
For decades, astrocytes have been considered to be non-excitable support cells of the brain. However, this view has changed radically during the past twenty years. The recent recognition that they are organized in separate territories and possess active properties--notably a competence for the regulated release of 'gliotransmitters', including(More)
The spatial-temporal characteristics of intracellular calcium ([Ca2+]i) changes elicited in neurons and astrocytes by various types of stimuli were investigated by means of confocal fluorescent microscopy in acute rat brain slices loaded with the Ca2+ indicator indo-1. Neurons and astrocytes from the visual cortex and CA1 hippocampal region were identified(More)
Astrocytes actively participate in synaptic integration by releasing transmitter (glutamate) via a calcium-regulated, exocytosis-like process. Here we show that this process follows activation of the receptor CXCR4 by the chemokine stromal cell-derived factor 1 (SDF-1). An extraordinary feature of the ensuing signaling cascade is the rapid extracellular(More)
Astrocytes establish rapid cell-to-cell communication through the release of chemical transmitters. The underlying mechanisms and functional significance of this release are, however, not well understood. Here we identify an astrocytic vesicular compartment that is competent for glutamate exocytosis. Using postembedding immunogold labeling of the rat(More)
The release of transmitters from glia influences synaptic functions. The modalities and physiological functions of glial release are poorly understood. Here we show that glutamate exocytosis from astrocytes of the rat hippocampal dentate molecular layer enhances synaptic strength at excitatory synapses between perforant path afferents and granule cells. The(More)
Astrocytes communicate with synapses by means of intracellular calcium ([Ca(2+)](i)) elevations, but local calcium dynamics in astrocytic processes have never been thoroughly investigated. By taking advantage of high-resolution two-photon microscopy, we identify the characteristics of local astrocyte calcium activity in the adult mouse hippocampus.(More)
Astrocytes in the brain form an intimately associated network with neurons. They respond to neuronal activity and synaptically released glutamate by raising intracellular calcium concentration ([Ca2+]i), which could represent the start of back-signalling to neurons. Here we show that coactivation of the AMPA/kainate and metabotropic glutamate receptors(More)
Astrocyte Ca(2+) signalling has been proposed to link neuronal information in different spatial-temporal dimensions to achieve a higher level of brain integration. However, some discrepancies in the results of recent studies challenge this view and highlight key insufficiencies in our current understanding. In parallel, new experimental approaches that(More)
The identification of the presence of active signaling between astrocytes and neurons in a process termed gliotransmission has caused a paradigm shift in our thinking about brain function. However, we are still in the early days of the conceptualization of how astrocytes influence synapses, neurons, networks, and ultimately behavior. In this Perspective,(More)