Andrea Völker

Learn More
Proteomics relying on two-dimensional (2-D) gel electrophoresis of proteins followed by spot identification with mass spectrometry is an excellent experimental tool for physiological studies opening a new perspective for understanding overall cell physiology. This is the intriguing outcome of a method introduced by Klose and O'Farrell independently 25 years(More)
sigma B is a secondary sigma factor that controls the general stress response of Bacillus subtilis. sigma B-dependent transcription is induced by the activation of sigma B itself, a process that involves release of sigma B from an inhibitory complex with its primary regulator, RsbW. sigma B becomes available to RNA polymerase when RsbW forms a complex with(More)
A variety of environmental and metabolic cues trigger the transient activation of the alternative transcription factor SigB of Bacillus subtilis, which subsequently leads to the induction of more than 150 general stress genes. This general stress regulon provides nongrowing and nonsporulated cells with a multiple, nonspecific, and preemptive stress(More)
A computer-aided analysis of high resolution two-dimensional polyacrylamide gels was used to investigate the changes in the protein synthesis profile in B. subtilis wild-type strains and sigB mutants in response to heat shock, salt and ethanol stress, and glucose of phosphate starvation. The data provided evidence that the induction of a least 42 general(More)
In Bacillus subtilis stress proteins are induced in response to different environmental conditions such as heat shock, salt stress, glucose and oxygen limitation or oxidative stress. These stress proteins have been previously grouped into general stress proteins (Gsps) and heat-specific stress proteins (Hsps). In this investigation the N-terminal sequences(More)
sigma B is a secondary sigma factor that controls the general stress regulon in Bacillus subtilis. The regulon is activated when sigma B is released from a complex with an anti-sigma B protein (RsbW) and becomes free to associate with RNA polymerase. Two separate mechanisms cause sigma B release: an ATP-responsive mechanism that correlates with nutritional(More)
Proteome analysis of Bacillus subtilis cells grown at low and high salinity revealed the induction of 16 protein spots and the repression of 2 protein spots, respectively. Most of these protein spots were identified by mass spectrometry. Four of the 16 high-salinity-induced proteins corresponded to DhbA, DhbB, DhbC, and DhbE, enzymes that are involved in(More)
The chaperone-encoding groESL and dnaK operons constitute the CIRCE regulon of Bacillus subtilis. Both operons are under negative control of the repressor protein HrcA, which interacts with the CIRCE operator and whose activity is modulated by the GroESL chaperone machine. In this report, we demonstrate that induction of the CIRCE regulon can also be(More)
sigma B is a secondary sigma factor that controls the general stress response in Bacillus subtilis. sigma B-dependent genes are activated when sigma B is released from an inhibitory complex with an anti-sigma B protein (RsbW) and becomes free to associate with RNA polymerase. Two separate pathways, responding either to a drop in intracellular ATP levels or(More)
Twenty-three of the most prominent spots which are visible on two-dimensional (2-D) protein gels of Bacillus subtilis crude extracts were selected as marker spots for the construction of a 2-D protein index. N-terminal sequencing of the corresponding proteins resulted in the identification of enzymes involved in glycolysis, TCA cycle, pentose phosphate(More)