Learn More
Wnt signalling, which is transduced through beta-catenin/TCF4, maintains the undifferentiated state of intestinal crypt progenitor cells. Mutational activation of the pathway initiates the adenomacarcinoma sequence. Whereas all other differentiated epithelial cells migrate from the crypt onto the villus, Paneth cells home towards the source of Wnt(More)
Inflammation is a pathophysiological hallmark of many diseases of the brain. Specific imaging of cells and molecules that contribute to cerebral inflammation is therefore highly desirable, both for research and in clinical application. The 18 kDa translocator protein (TSPO) has been established as a suitable target for the detection of activated(More)
Degeneration of locus ceruleus neurons and subsequent reduction of norepinephrine concentration in locus ceruleus projection areas represent an early pathological indicator of Alzheimer's disease. In order to model the pathology of the human disease and to study the effects of norepinephrine-depletion on amyloid precursor protein processing, behaviour, and(More)
Earlier post-mortem histological and autoradiographic studies have indicated a reduction of cell numbers in the locus coeruleus (LC) and a corresponding decrease in norepinephrine transporter (NET) in brains obtained from Alzheimer's disease (AD) patients as compared to age-matched healthy controls. In order to test the hypothesis that the regional decrease(More)
Renal cell carcinoma accounts for about 3% of adult malignancies and 85% of neoplasms arising from the kidney. To identify potential progression markers for kidney cancer we examined non-neoplastic and neoplastic kidney tissue from three groups of patients, which represent different tumor stages (pT1, pT2, pT3) by a fluorescence two-dimensional difference(More)
The binding of two radiolabelled analogues (N-(5-[125I]Iodo-2-phenoxyphenyl)-N-(2,5-dimethoxybenzyl)acetamide ([125I]desfluoro-DAA1106) and N-(5-[125I]Fluoro-2-phenoxyphenyl)-N-(2-[125I]Iodo-5-methoxybenzyl)acetamide ([125I]desmethoxy-DAA1106) of the peripheral benzodiazepine receptor (PBR) (or TSPO, 18kDa translocator protein) ligand DAA1106 was examined(More)
BACKGROUND The activation of microglia, in general, and the upregulation of the translocator protein (18 kDa) (TSPO) system, in particular, are key features of neuroinflammation, of which the in vivo visualization and quantitative assessment are still challenging due to the lack of appropriate molecular imaging biomarkers. Recent positron emission(More)
PURPOSE Amyloid-β (Aβ) plaques are a major pathological hallmark of Alzheimer's disease (AD). The noninvasive detection of Aβ plaques may increase the accuracy of clinical diagnosis as well as monitor therapeutic interventions. While [(11)C]-PiB is the most widely used Aβ positron emission tomography (PET) radiotracer, due to the short half-life of (11)C(More)
PURPOSE Imaging the 18-kDa translocator protein (TSPO) is considered a potential tool for in vivo evaluation of microglial activation and neuroinflammation in the early stages of Alzheimer's disease (AD). ((R)-1-(2-chlorophenyl)-N-[(11)C]-methyl-N-(1-methylpropyl)-3-isoquinoline caboxamide ([(11)C]-(R)-PK11195) has been widely used for PET imaging of TSPO(More)
In this study, we evaluated the in vivo characteristics of a new monoamine oxidase type B (MAO-B) radioligand, [¹⁸F]fluorodeprenyl, by positron emission tomography (PET) in two cynomolgus monkeys. The brain uptake of [¹⁸F]fluorodeprenyl was more than 7% (600% SUV) of the total injected radioactivity and similar to that of [¹¹C]deprenyl, an established MAO-B(More)