Andrea Tassi

Learn More
The explosive growth of content-on-the-move, such as video streaming to mobile devices, has propelled research on multimedia broadcast and multicast schemes. Multi-rate transmission strategies have been proposed as a means of delivering layered services to users experiencing different downlink channel conditions. In this paper, we consider(More)
Video service delivery over 3GPP Long Term Evolution-Advanced (LTE-A) networks is gaining momentum with the adoption of the evolved Multimedia Broadcast Multicast Service (eMBMS). In this paper, we address the challenge of optimizing the radio resource allocation process so that heterogeneous groups of users, according to their propagation conditions, can(More)
The interest towards real-time computing has lead an even more interest in grid computing. While in the past the implementation of grid computing has been done on high performance computers, in the recent years there is an increasing interest in the pervasive grid scenarios, where multiple devices can be used for a distributed computing. The most(More)
We consider binary systematic network codes and investigate their capability of decoding a source message either in full or in part. We carry out a probability analysis, derive closed-form expressions for the decoding probability and show that systematic network coding outperforms conventional network coding. We also develop an algorithm based on Gaussian(More)
This letter considers a network comprising a transmitter, which employs random linear network coding to encode a message, a legitimate receiver, which can recover the message if it gathers a sufficient number of linearly independent coded packets, and an eavesdropper. Closed-form expressions for the probability of the eavesdropper intercepting enough coded(More)
In this letter, we propose two optimized multicast communication strategies based on the Network Coding principle which aim to significantly improve the performance in terms of the power cost and delivery delay associated to the transmission of the whole data flow. The proposed strategies are of special interest for service delivered in an unreliable mode.(More)
Long Term Evolution (LTE) is considered one of the main candidate to provide wireless broadband access to mobile users. Among main LTE characteristics, flexibility and efficiency can be guaranteed by resorting to suitable resource allocation schemes, in particular by adopting adaptive OFDM schemes. This paper proposes a novel solution to the subcarrier(More)
We propose a energy efficient resource allocation framework suitable for multicast service delivery over 3GPP’s LTE-A SFN-eMBMS networks. A key aspect of the considered system model is that multicast communications are delivered according to the RLNC principle. The proposed optimization framework aims at minimizing the transmission energy associated with(More)
The distributed computing is an approach relying on the presence of multiple devices that can interact among them in order to perform a pervasive and parallel computing. This chapter deals with the communication protocol aiming to be used in a distributed computing scenario; in particular the considered computing infrastructure is composed by elements(More)