Learn More
Chemical crosslinking in combination with mass spectrometry has matured into an alternative approach to derive low-resolution structural information of proteins and protein complexes. Yet, one of the major drawbacks of this strategy remains the lack of software that is able to handle the large MS datasets that are created after chemical crosslinking and(More)
Calmodulin serves as a calcium-dependent regulator in many metabolic pathways and is known to bind with high affinity to various target proteins and peptides. One such target is the small peptide melittin, the principal component of honeybee venom. The calmodulin-melittin system was used as a model system to gain further insight into target recognition of(More)
The CCR4-NOT complex is the main enzyme catalyzing the deadenylation of mRNA. We have investigated the composition of this complex in Drosophila melanogaster by immunoprecipitation with a monoclonal antibody directed against NOT1. The CCR4, CAF1 (=POP2), NOT1, NOT2, NOT3, and CAF40 subunits were associated in a stable complex, but NOT4 was not. Factors(More)
Closely related to studying the function of a protein is the analysis of its three-dimensional structure and the identification of interaction sites with its binding partners. An alternative approach to the high-resolution methods for three-dimensional protein structure analysis, such as X-ray crystallography and NMR spectroscopy, consists of covalently(More)
Chemical cross-linking of proteins, an established method in protein chemistry, has gained renewed interest in combination with mass spectrometric analysis of the reaction products for elucidating low-resolution three-dimensional protein structures and interacting sequences in protein complexes. The identification of the large number of cross-linking sites(More)
Techniques in mass spectrometry (MS) combined with chemical cross-linking have proven to be efficient tools for the rapid determination of low-resolution three-dimensional (3-D) structures of proteins. The general procedure involves chemical cross-linking of a protein followed by enzymatic digestion and MS analysis of the resulting peptide mixture. These(More)
Differential proteome analysis is used to study body fluids from patients suffering from rheumatoid arthritis (RA), reactive arthritis (reaA) or osteoarthritis (OA). Mass spectrometric structure characterization of gel-separated proteins provided a detailed view of the protein-processing events that lead to distinct protein species present in the respective(More)
Tumor necrosis factor (TNF-alpha) inhibitors, used for the treatment of common inflammatory diseases, currently belong among the most important biotechnologically produced pharmaceuticals. So far four TNF-alpha antagonists have been approved by regulatory authorities for defined subsets of applications. Furthermore, numerous approaches are being taken to(More)
Electron capture dissociation (ECD) and infrared multiphoton dissociation (IRMPD) present complementary techniques for the fragmentation of peptides and proteins in Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) in addition to the commonly used collisionally activated dissociation (CAD). Both IRMPD and ECD have been shown to be(More)
Calmodulin (CaM), by mediating the stimulation of the activity of two adenylyl cyclases (ACs), plays a key role in integrating the cAMP and Ca(2+) signaling systems. These ACs, AC1 and AC8, by decoding discrete Ca(2+) signals can contribute to fine-tuning intracellular cAMP dynamics, particularly in neurons where they predominate. CaM comprises an α-helical(More)