Andrea Remuzzi

Learn More
We present a modeling framework designed for patient-specific computational hemodynamics to be performed in the context of large-scale studies. The framework takes advantage of the integration of image processing, geometric analysis and mesh generation techniques, with an accent on full automation and high-level interaction. Image segmentation is performed(More)
Investigation of three-dimensional (3-D) geometry and fluid-dynamics in human arteries is an important issue in vascular disease characterization and assessment. Thanks to recent advances in magnetic resonance (MR) and computed tomography (CT), it is now possible to address the problem of patient-specific modeling of blood vessels, in order to take into(More)
There is well-documented evidence that vascular geometry has a major impact in blood flow dynamics and consequently in the development of vascular diseases, like atherosclerosis and cerebral aneurysmal disease. The study of vascular geometry and the identification of geometric features associated with a specific pathological condition can therefore shed(More)
A number of computational approaches have been proposed for the simulation of haemodynamics and vascular wall dynamics in complex vascular networks. Among them, 0D pulse wave propagation methods allow to efficiently model flow and pressure distributions and wall displacements throughout vascular networks at low computational costs. Although several(More)
In this work we present a robust and accurate method for the computation of centerlines inside branching tubular objects starting from a piecewise linear representation of their boundary. The algorithm is based on solving the Eikonal equation on the Voronoi diagram embedded into the object, with wavefront speed inversely proportional to Voronoi ball radius(More)
  • Arianna Scuteri, Elisabetta Donzelli, Virginia Rodriguez-Menendez, Maddalena Ravasi, Marianna Monfrini, Barbara Bonandrini +3 others
  • 2014
The clinical usability of pancreatic islet transplantation for the treatment of type I diabetes, despite some encouraging results, is currently hampered by the short lifespan of the transplanted tissue. In vivo studies have demonstrated that co-transplantation of Mesenchymal Stem Cells (MSCs) with transplanted pancreatic islets is more effective with(More)
The use of pluripotent cells in stem cell therapy has major limitations, mainly related to the high costs and risks of exogenous conditioning and the use of feeder layers during cell expansion passages. We developed an innovative three-dimensional culture substrate made of “nichoid” microstructures, nanoengineered via two-photon laser polymerization. The(More)