Learn More
The incidence of chronic kidney diseases is increasing worldwide, and these conditions are emerging as a major public health problem. While genetic factors contribute to susceptibility and progression of renal disease, proteinuria has been claimed as an independent predictor of outcome. Reduction of urinary protein levels by various medications and a(More)
We present a modeling framework designed for patient-specific computational hemodynamics to be performed in the context of large-scale studies. The framework takes advantage of the integration of image processing, geometric analysis and mesh generation techniques, with an accent on full automation and high-level interaction. Image segmentation is performed(More)
For chronic kidney diseases, there is little chance that the vast majority of world's population will have access to renal replacement therapy with dialysis or transplantation. Tissue engineering would help to address this shortcoming by regeneration of damaged kidney using naturally occurring scaffolds seeded with precursor renal cells. The aims of the(More)
The effects of hemodynamic forces upon vascular endothelial cell turnover were studied by exposing contact-inhibited confluent cell monolayers to shear stresses of varying amplitude in either laminar or turbulent flow. Laminar shear stresses (range, 8-15 dynes/cm2; 24 hr) induced cell alignment in the direction of flow without initiating the cell cycle. In(More)
There is well-documented evidence that vascular geometry has a major impact in blood flow dynamics and consequently in the development of vascular diseases, like atherosclerosis and cerebral aneurysmal disease. The study of vascular geometry and the identification of geometric features associated with a specific pathological condition can therefore shed(More)
Protein trafficking across the glomerular capillary has a pathogenic role in subsequent renal damage. Despite evidence that angiotensin-converting enzyme (ACE) inhibitors improve glomerular size-selectivity, whether this effect is solely due to ANG II blocking or if other mediators also play a contributory role is not clear yet. We studied 20 proteinuric(More)
Activation of mammalian target of rapamycin (mTOR) pathways may contribute to uncontrolled cell proliferation and secondary cyst growth in patients with autosomal dominant polycystic kidney disease (ADPKD). To assess the effects of mTOR inhibition on disease progression, we performed a randomized, crossover study (The SIRENA Study) comparing a 6-month(More)
Transplantation of bone marrow mesenchymal stem cells (BM-MSC) or stromal cells from rodents has been identified as a strategy for renal repair in experimental models of acute kidney injury (AKI), a highly life-threatening clinical setting. The therapeutic potential of BM-MSC of human origin has not been reported so far. Here, we investigated whether human(More)
BACKGROUND Chronic kidney disease is an important cause of global mortality and morbidity. Data for epidemiological features of chronic kidney disease and its risk factors are limited for low-income and middle-income countries. The International Society of Nephrology's Kidney Disease Data Center (ISN-KDDC) aimed to assess the prevalence and awareness of(More)
In the present study, we evaluated the effect of simultaneously blocking angiotensin II synthesis and endothelin (ET)-1 activity as a multimodal intervention to implement renoprotection in overt diabetic nephropathy. Mechanisms underlying combined therapy effectiveness were addressed by investigating podocyte structure and function and glomerular barrier(More)