Andrea R Hasenstaub

Learn More
The vast majority of synaptic connections onto neurons in the cerebral cortex arise from other cortical neurons, both excitatory and inhibitory, forming local and distant 'recurrent' networks. Although this is a basic theme of cortical organization, its study has been limited largely to theoretical investigations, which predict that local recurrent networks(More)
Temporal precision in spike timing is important in cortical function, interactions, and plasticity. We found that, during periods of recurrent network activity (UP states), cortical pyramidal cells in vivo and in vitro receive strong barrages of both excitatory and inhibitory postsynaptic potentials, with the inhibitory potentials showing much higher power(More)
The recurrent excitatory and inhibitory connections between and within layers of the cerebral cortex are fundamental to the operation of local cortical circuits. Models of cortical function often assume that recurrent excitation and inhibition are balanced, and we recently demonstrated that spontaneous network activity in vitro contains a precise balance of(More)
Ongoing synaptic activity, ever present in cortical neurons, may vary widely in its amplitude and characteristics, potentially having a strong influence on neuronal processing. Intracellular recordings in layer 5 pyramidal cells in prefrontal and visual cortical slices maintained in vitro revealed spontaneous periods of synaptic bombardment. Testing the(More)
Traditionally, neuronal operations in the cerebral cortex have been viewed as occurring through the interaction of synaptic potentials in the dendrite and soma, followed by the initiation of an action potential, typically in the axon. Propagation of this action potential to the synaptic terminals is widely believed to be the only form of rapid communication(More)
Local cortical networks in the prefrontal cortex and visual cortex are capable of spontaneously generating sustained activity for periods of seconds or longer. This sustained activity is generated through recurrent excitation between pyramidal cells that is controlled by feedback inhibition and can have both a rapid onset and a rapid offset. The period of(More)
The responsiveness of cortical neurons is strongly and rapidly influenced by changes in the level of local network activity. In rodent somatosensory cortex, increases in network activity increase neuronal responsiveness to the intracellular injection of brief conductance stimuli but paradoxically decrease responsiveness to brief whisker deflections.(More)
Spontaneous activity within local circuits affects the integrative properties of neurons and networks. We have previously shown that neocortical network activity exhibits a balance between excitatory and inhibitory synaptic potentials, and such activity has significant effects on synaptic transmission, action potential generation, and spike timing. However,(More)
The brain contains an astonishing diversity of neurons, each expressing only one set of ion channels out of the billions of potential channel combinations. Simple organizing principles are required for us to make sense of this abundance of possibilities and wealth of related data. We suggest that energy minimization subject to functional constraints may be(More)
A characteristic feature in the primary visual cortex is that visual responses are suppressed as a stimulus extends beyond the classical receptive field. Here, we examined the role of inhibitory neurons expressing somatostatin (SOM⁺) or parvalbumin (PV⁺) on surround suppression and preferred receptive field size. We recorded multichannel extracellular(More)