Andrea Polimadei

Learn More
Temperature monitoring in tissue undergone Laser Ablation (LA) may be particularly beneficial to optimize treatment outcome. Among many techniques, fiber Bragg grating (FBG) sensors show valuable characteristics for temperature monitoring in this medical scenario: good sensitivity and accuracy, and immunity from electromagnetic interferences. Their main(More)
Continuous respiratory monitoring is important to assess adequate ventilation. We present a fiber optic-based smart textile for respiratory monitoring able to work during Magnetic Resonance (MR) examinations. The system is based on the conversion of chest wall movements into strain of two fiber Bragg grating (FBG) sensors, placed on the upper thorax (UT).(More)
Radiofrequency ablation (RFA) is a minimally invasive procedure used to treat tumors by means of hyperthermia, mostly through percutaneous approach. The tissue temperature plays a pivotal role in the achievement of the target volume heating, while sparing the surrounding healthy tissue from thermal damage. Several techniques for thermometry during RFA are(More)
The present study investigates the influence of uniform FBG length on temperature measurement under substantial temperature gradient. This analysis is particularly relevant in the scenario of laser ablation (LA), where the temperature gradient close to the optical applicator is significant (e.g., up to 50 °C/mm). Aiming to assess how the sensor(More)
Comfortable and easy to wear smart textiles have gained popularity for continuous respiratory monitoring. Among different emerging technologies, smart textiles based on fiber optic sensors (FOSs) have several advantages, like Magnetic Resonance (MR)-compatibility and good metrological properties. In this paper we report on the development and assessment of(More)
During thermal procedures, the monitoring of tissue temperature is useful to improve therapy success. The aim of this study is the feasibility assessment of a Fiber Bragg Grating (FBG)-based probe, which contains six FBGs, to obtain distributed temperature measurement in tissue undergoing laser ablation (LA). Among different thermometric techniques, FBG(More)
In this work a spatially-resolved fiber optic temperature sensor has been characterized in a wide range of gradient applied on its active area (from -35 °C to +35 °C). Preliminary experiments to assess its feasibility for application in laser ablation have been performed. The sensor under test is a linearly chirped fiber Bragg grating (FBG), with 1.5(More)
Laser ablation (LA) is a minimally invasive procedure used to remove cancer by inducing hyperthermia. It is based on the interaction between laser light and tissue: the absorbed light is converted into heat causing a tissue temperature increase. The amount of damaged volume depends on temperature and time exposure of the tissue to the hyperthermia. As a(More)
Monitoring of local temperature in tissue undergoing Laser Ablation (LA) could be particularly beneficial to optimize treatment outcomes. A number of both invasive and non-invasive thermometric techniques may be employed to perform this task. Among others, Fiber Bragg Grating (FBG) sensors show the following valuable characteristics for temperature(More)
  • 1