Andrea Perinot

Learn More
High-mobility semiconducting polymers offer the opportunity to develop flexible and large-area electronics for several applications, including wearable, portable and distributed sensors, monitoring and actuating devices. An enabler of this technology is a scalable printing process achieving uniform electrical performances over large area. As opposed to the(More)
A new concept of a high-capacitance polymeric dielectric based on high-k polymer and ion gel blends is reported. This solid-state electrolyte gate insulator enables remarkable field-effect mobilities exceeding 10 cm2 V-1 s-1 for common polymer and other semiconductor families at VG ≤ 2 V owing to high areal capacitance (>4 µF cm-2 ) from combined(More)
Using a combination of nanoimprint lithography, gate-source/drain self-alignment, and gravure and inkjet printing, we fabricate organic field-effect transistors on flexible plastic substrates with gate-source and gate-drain electrode overlap capacitances of COL < 1 pF, equivalent to channel-width normalised capacitances of C*OL = 0.15 – 0.23 pF mm. We(More)
Printed polymer electronics has held for long the promise of revolutionizing technology by delivering distributed, flexible, lightweight and cost-effective applications for wearables, healthcare, diagnostic, automation and portable devices. While impressive progresses have been registered in terms of organic semiconductors mobility, field-effect transistors(More)
Fully solution-processed direct perovskite solar cells with a planar junction are realized by incorporating a cross-linked [6,6]-phenyl-C61-butyric styryl dendron ester layer as an electron extracting layer. Power conversion efficiencies close to 19% and an open-circuit voltage exceeding 1.1 V with negligible hysteresis are delivered. A perovskite film with(More)
  • 1