Andrea Maria Lorentzen

Learn More
Lipochitin oligosaccharides called Nod factors function as primary rhizobial signal molecules triggering legumes to develop new plant organs: root nodules that host the bacteria as nitrogen-fixing bacteroids. Here, we show that the Lotus japonicus Nod factor receptor 5 (NFR5) and Nod factor receptor 1 (NFR1) bind Nod factor directly at high-affinity binding(More)
Programmed cell death often depends on generation of reactive oxygen species, which can be detoxified by antioxidative enzymes, including catalases. We previously isolated catalase-deficient mutants (cat2) in a screen for resistance to hydroxyurea-induced cell death. Here, we identify an Arabidopsis thaliana hydroxyurea-resistant autophagy mutant, atg2,(More)
The side chains of the rhamnogalacturonan I fraction in sugar beet pectin are particularly rich in arabinan moieties, which may be substituted with feruloyl groups. In this work the arabinan-rich fraction resulting from sugar beet pulp based pectin production was separated by Amberlite XAD hydrophobic interaction and membrane separation into four fractions(More)
Bovine and camel chymosin are aspartic peptidases that are used industrially in cheese production. They cleave the Phe105-Met106 bond of the milk protein κ-casein, releasing its predominantly negatively charged C-terminus, which leads to the separation of the milk into curds and whey. Despite having 85% sequence identity, camel chymosin shows a 70% higher(More)
Legume pods serve important functions during seed development and are themselves sources of food and feed. Compared to seeds, the metabolism and development of pods are not well-defined. The present characterization of pods from the model legume Lotus japonicus, together with the detailed analyses of the pod and seed proteomes in five developmental stages,(More)
Legume food allergy, such as allergy toward peanuts and soybeans, is a health issue predicted to worsen as dietary advice recommends higher intake of legume-based foods. Lotus japonicus (Lotus) is an established legume plant model system for studies of symbiotic and pathogenic microbial interactions and, due to its well characterized genotype/phenotype and(More)
Legume symbiosis with rhizobia results in the formation of a specialized organ, the root nodule, where atmospheric dinitrogen is reduced to ammonia. In Lotus japonicus (Lotus), several genes involved in nodule development or nodule function have been defined using biochemistry, genetic approaches, and high-throughput transcriptomics. We have employed(More)
Studies of protein N-glycosylation are important for answering fundamental questions on the diverse functions of glycoproteins in plant growth and development. Here we generated and characterised a comprehensive collection of Lotus japonicusLORE1 insertion mutants, each lacking the activity of one of the 12 enzymes required for normal N-glycan maturation in(More)
TH2-biased immunity to parasites and allergens is often associated with increased levels of antigen-specific and high affinity IgE. The role in reacting against minute amounts of target structures and to provoke severe anaphylactic reactions renders IgE a mechanistically outstanding isotype. IgE represents the least abundant serum antibody isotype and(More)
  • 1