Andrea M. P. Romani

Learn More
The abundance of magnesium (Mg2+) within mammalian cells is consistent with its relevant role in regulating tissue and cell functions. At the last count, more than three hundred and fifty enzymes, aside from metabolic cycles, appear to require and be regulated by concentrations of Mg2+ that are well within the physiological range observed in tissues and(More)
Upon activation of specific cell signaling, hepatocytes rapidly accumulate or release an amount of Mg(2+) equivalent to 10% of their total Mg(2+) content. Although it is widely accepted that Mg(2+) efflux is Na(+)-dependent, little is known about transporter identity and the overall regulation. Even less is known about the mechanism of cellular Mg(2+)(More)
The plasma membrane of mammalian cells possesses rapid Mg2+ transport mechanisms. The identity of Mg2+ transporters is unknown, and so are their properties. In this study, Mg2+ transporters were characterized using a biochemically and morphologically standardized preparation of sealed rat liver plasma membranes (LPM) whose intravesicular content could be(More)
Perfused rat hearts release or accumulate approximately 10% of total Mg2+ content when stimulated with norepinephrine (NE) or carbachol, respectively. Collagenase-dispersed rat ventricular myocytes increase or decrease total cell Mg2+ by 1 mM within 5 minutes when stimulated with these same transmitters. Measurements of Mg2+ transport using 28Mg or atomic(More)
Magnesium, the second most abundant cellular cation after potassium, is essential to regulate numerous cellular functions and enzymes, including ion channels, metabolic cycles, and signaling pathways, as attested by more than 1000 entries in the literature. Despite significant recent progress, however, our understanding of how cells regulate Mg(2+)(More)
Collagenase dispersed rat liver hepatocytes release Mg2+ when stimulated with norepinephrine or accumulate Mg2+ when stimulated with vasopressin, respectively. Mg2+ fluxes in either direction account for a net loss or gain of approximately 10% of total cell magnesium and are rapidly reversible. Both stimulated Mg2+ efflux and Mg2+ influx require(More)
A large Mg2+ cell uptake against concentration gradients is stimulated in collagenase-dispersed rat myocytes by carbachol and in hepatocytes by carbachol or vasopressin. The signalling pathway(s) responsible for this stimulation of Mg2+ uptake was investigated by using various activators or inhibitors of protein kinase C (PKC) and by correlating Mg2+ uptake(More)
The changes in total Mg were compared with changes in cytosolic free Mg(2+) during metabolic stimulation of collagenase-dispersed rat cardiac myocytes or Langendorff-perfused rat hearts. In myocytes the addition of agents leading to cAMP increase or protein kinase C activation results in a loss or gain of more than 5% of total Mg content within 3 min (i.e.,(More)