Andrea Luvisi

Learn More
Electrophysiological techniques were applied to investigate the action of antiviral drugs during trans-plasma events in in vivo grapevine cells infected by GLRaV-1 and GLRaV-3. Carbon fiber microelectrodes and redox-sensitive dyes were used to measure trans-plasma membrane electron transport (t-PMET) activity in healthy and infected samples treated with(More)
Antiviral drugs have demonstrated significant therapeutic potential against phytoviruses, such as inosine monophosphate dehydrogenase inhibitors like mycophenolic acid or thiopurines. However, drug delivery across cellular barriers is a challenging task that calls for investigation. In this study, membrane transport of three antiviral drugs such as(More)
Mycophenolic acid (MPA) is an inosine monophosphate dehydrogenase inhibitor whose antiviral mechanism of action is supposed to interfere with NAD(+)/NADH conversion. Its effects on trans-plasma membrane electron transport (t-PMET) and on trans-plasma membrane electric potential (t-PMEP), which are involved in the NAD(+)/NADH conversion, were investigated(More)
Different chemotherapeutic strategies on closely correlated phytoviruses, such as Grapevine leafroll-associated virus-1 (GLRaV-1) and -3 (GLRaV-3), were tested in the same host in order to investigate selective chemotherapy of virus infections in plants. To eradicate these viruses from grapevine in vitro explants, antiviral treatments using heat or chemical(More)
In many European rural areas, agriculture is not only an economic activity, but it is strictly linked to environmental and social characteristics of the area. Thus, sometimes, a pathogen can become a social threat, as in the case of Xylella fastidiosa and olive trees (Olea europaea L.) in Salento. Fast and systemic response to threats represents the key to(More)
Food contamination by toxic pesticides has induced intense research for alternative methods to control pests and diseases. For instance, the phasing out of methyl bromide used for soil disinfection has led to a reconsideration of heat-based methods to control soil-borne pathogens. Techniques such as soil steaming and soil solarization have been applied(More)
The disease outbreak of Xylella fastidiosa subsp. pauca strain CoDiRO (Complesso del Disseccamento Rapido dell’Olivo) in Salento (Apulia, South Italy) associated with severe cases of olive quick decline syndrome may represent not just a new disease paradigm, but a challenge for policy formulation and science communication in plant pathology. Plant health(More)