Andrea J. Pereira

Learn More
We report here that disruption of a recently discovered kinesin-like protein in Drosophila melanogaster, KLP61F, results in a mitotic mutation lethal to the organism. We show that in the absence of KLP61F function, spindle poles fail to separate, resulting in the formation of monopolar mitotic spindles. The resulting phenotype of metaphase arrest with(More)
The 205-kD microtubule-associated protein (205K MAP) is one of the principal MAPs in Drosophila. 205K MAP is similar to the HeLa 210K/MAP4 family of MAPs since it shares the following biochemical properties: it is present in several isoforms, has a molecular mass of approximately 200 kD, and is thermostable. Furthermore, immuno-crossreactivity has been(More)
The kinesin superfamily is a large group of proteins (kinesin-like proteins [KLPs]) that share sequence similarity with the microtubule (MT) motor kinesin. Several members of this superfamily have been implicated in various stages of mitosis and meiosis. Here we report our studies on KLP67A of Drosophila. DNA sequence analysis of KLP67A predicts an MT motor(More)
Nrdp1 is a RING finger ubiquitin E3 ligase that interacts with Parkin, and promotes the degradation of Parkin, a causative protein for early onset Autosomal Recessive Juvenile Parkinsonism (AR-JP). To investigate if Nrdp1 plays a role in the pathogenesis of Parkinson's disease, we generated transgenic Drosophila that expressed Drosophila Nrdp1 (dNrdp1) and(More)
The KLP61F gene product is essential for Drosophila development. Mutations in KLP61F display a mitotic arrest phenotype caused by a failure in the proper separation of duplicated centrosomes (Heck et al., 1993). Sequence analysis of KLP61F identified it as a member of the bimC family of kinesin-like microtubule motor proteins. Here we report that KLP61F is(More)
  • 1