Andrea J. Goldsmith

Learn More
Although the capacity of multiple-input/multipleoutput (MIMO) broadcast channels (BCs) can be achieved by dirty paper coding (DPC), it is difficult to implement in practical systems. This paper investigates if, for a large number of users, simpler schemes can achieve the same performance. Specifically, we show that a zero-forcing beamforming (ZFBF)(More)
We consider radio applications in sensor networks where the nodes operate on batteries so that energy consumption must be minimized while satisfying given throughput and delay requirements. In this context, we analyze the best modulation and transmission strategy to minimize the total energy consumption required to send a given number of bits. The total(More)
We obtain the Shannon capacity of a fading channel with channel side information at the transmitter and receiver, and at the receiver alone. The optimal power adaptation in the former case is “water-pouring” in time, analogous to water-pouring in frequency for time-invariant frequency-selective fading channels. Inverting the channel results in a large(More)
We propose a variable-rate and variable-power MQAM modulation scheme for high-speed data transmission over fading channels. We first review results for the Shannon capacity of fading channels with channel side information, where capacity is achieved using adaptive transmission techniques. We then derive the spectral efficiency of our proposed modulation. We(More)
Abstract— We consider a multi-user multiple input multiple output (MIMO) Gaussian broadcast channel (BC), where the transmitter and receivers have multiple antennas. Since the MIMO broadcast channel is in general a non-degraded broadcast channel, its capacity region remains an unsolved problem. In this paper, we establish a duality between what is termed(More)
We consider wireless systems where the nodes operate on batteries so that energy consumption must be minimized while satisfying given throughput and delay requirements. In this context, we analyze the best modulation strategy to minimize the total energy consumption required to send a given number of bits. The total energy consumption includes both the(More)
We examine adaptive modulation schemes for flat-fading channels where the data rate, transmit power, and instantaneous BER are varied to maximize spectral efficiency, subject to an average power and BER constraint. Both continuous-rate and discrete-rate adaptation are considered, as well as average and instantaneous BER constraints. We find the general form(More)
We provide an overview of the extensive recent results on the Shannon capacity of single-user and multiuser multiple-input multiple-output (MIMO) channels. Although enormous capacity gains have been predicted for such channels, these predictions are based on somewhat unrealistic assumptions about the underlying time-varying channel model and how well it can(More)
We analyze the sum-rate performance of a multiantenna downlink system carrying more users than transmit antennas, with partial channel knowledge at the transmitter due to finite rate feedback. In order to exploit multiuser diversity, we show that the transmitter must have, in addition to directional information, information regarding the quality of each(More)
Cognitive radios hold tremendous promise for increasing spectral efficiency in wireless systems. This paper surveys the fundamental capacity limits and associated transmission techniques for different wireless network design paradigms based on this promising technology. These paradigms are unified by the definition of a cognitive radio as an intelligent(More)