Learn More
The fusion of lipid bilayers is studied with dissipative particle dynamics simulations. First, to achieve control over membrane properties, the effects of individual simulation parameters are studied and optimized. Then, a large number of fusion events for a vesicle and a planar bilayer are simulated using the optimized parameter set. In the observed fusion(More)
Understanding the factors that influence the free energy of lipids in bilayer membranes is an essential step toward understanding exchange processes of lipids between membranes. In general, both lipid composition and membrane geometry can affect lipid exchange rates between bilayer membranes. Here, the free energy change ΔG(des) for the desorption of(More)
Fusion of bilayer membranes is studied via dissipative particle dynamics (DPD) simulations. A new set of DPD parameters is introduced which leads to an energy barrier for flips of lipid molecules between adhering membranes. A large number of fusion events is monitored for a vesicle in contact with a planar membrane. Several time scales of the fusion process(More)
The complex polymerization dynamics of the microtubule (MT) plus end are closely linked to the hydrolysis of the GTP nucleotide bound to the β-tubulin. The destabilization is thought to be associated with the conformational change of the tubulin dimers from the straight conformation in the MT lattice to a curved conformation. It remains under debate whether(More)
Coarse-grained (CG) models of large biomolecular complexes enable simulations of these systems over long timescales that are not accessible for atomistic molecular dynamics (MD) simulations. A systematic methodology, called essential dynamics coarse-graining (ED-CG), has been developed for defining coarse-grained sites in a large biomolecule. The method(More)
Microtubule (MT) stability is related to the hydrolysis of the guanosine triphosphate nucleotide (NT) bound to β-tubulin. However, the molecular mechanism by which the NT state influences the stability of the contacts in the MT lattice remains elusive. Here, we present large-scale atomistic simulations of different tubulin aggregates, including individual(More)
Biomolecular processes involve hydrated ions, and thus molecular simulations of such processes require accurate force-field parameters for these ions. In the best force-fields, both ion-water and anion-cation interactions are explicitly parametrized. First, the ion Lennard-Jones parameters are optimized to reproduce, for example, single ion solvation free(More)
Hemicellulose polysaccharides play an important role in the swelling behavior of the primary plant cell wall, and molecular dynamics simulations provide the means of gaining a concise understanding of the interactions of hemicellulose polysaccharides with water. Here, we compare four of the main polysaccharide force fields (CHARMM36 TIP3P, GROMOS56A6(CARBO)(More)
Biological membranes form both intra- and intercellular nanotubes that are used for molecular sorting within single cells and for long-distance connections between different cells. Such nanotubes can also develop from synthetic lipid bilayers in their fluid state. Each nanotube has a large area-to-volume ratio and stably encloses a water channel that is(More)