Andrea Giantomassi

Learn More
This paper presents a robust discrete-time sliding mode control coupled with an uncertainty estimator designed for planar robotic manipulators. Experimental evidence shows satisfactory trajectory tracking performances and noticeable robustness in the presence of model inaccuracies, disturbances and payload perturbations. Ultimate boundedness of the tracking(More)
The paper demonstrates the importance of feature selection for recurrent neural network applied to problem of one hour ahead forecasting of thermal comfort for office building heated by gas. Although the accuracy of the forecasting is similar for both the feed-forward and the recurrent network, the removal of features leads to accuracy reduction much(More)