Andrea G. P. R. Figueiredo

Learn More
Antimicrobial bacterial cellulose/poly(2-aminoethyl methacrylate) (BC/PAEM) nanocomposites were prepared by in situ radical polymerization of 2-aminoethyl methacrylate, using variable amounts of N,N-methylenebis(acrylamide) (MBA) as cross-linker. The obtained nanocomposites were characterized in terms of their structure, morphology, thermal stability,(More)
A series of bacterial cellulose-poly(2-hydroxyethyl methacrylate) nanocomposite films was prepared by in situ radical polymerization of 2-hydroxyethyl methacrylate (HEMA), using variable amounts of poly(ethylene glycol) diacrylate (PEGDA) as cross-linker. Thin films were obtained, and their physical, chemical, thermal, and mechanical properties were(More)
Nowadays, the recognition of the benefits of antioxidants is eliciting an increasingly interest in the search for new molecules with improved activity. The aim of the present work was to search for improved reactive oxygen species (ROS) and reactive nitrogen species (RNS) scavengers by testing new structures of 2-styrylchromones (2-SC) and 3-substituted(More)
The present study reports the development of a new generation of bio-based nanocomposite proton exchange membranes based on bacterial cellulose (BC) and poly(4-styrene sulfonic acid) (PSSA), produced by in situ free radical polymerization of sodium 4-styrenesulfonate using poly(ethylene glycol) diacrylate (PEGDA) as cross-linker, followed by conversion of(More)
  • 1